PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  TRO40303, a mitochondrial-targeted cytoprotective compound, provides protection in hepatitis models 
TRO40303 is cytoprotective compound that was shown to reduce infarct size in preclinical models of myocardial infarction. It targets mitochondria, delays mitochondrial permeability transition pore (mPTP) opening and reduces oxidative stress in cardiomyocytes submitted to ischemia/reperfusion in vitro. Because the involvement of the mitochondria and the mPTP has been demonstrated in chronic as well as acute hepatitis, we investigated the potential of TRO40303 to prevent hepatocyte injury. A first set of in vitro studies showed that TRO40303 (from 0.3 to 3 μmol/L) protected HepG2 cells and primary mouse embryonic hepatocytes (PMEH) from palmitate intoxication, a model mimicking steatohepatitis. In PMEH, TRO40303 provided similar protection against cell death due to Jo2 anti-Fas antibody intoxication. Further studies were then preformed in a mouse model of Fas-induced fulminant hepatitis induced by injecting Jo2 anti-Fas antibody. When mice received a sublethal dose of Jo2 at 125 μg/kg, TRO40303 pretreatment prevented liver enzyme elevation in plasma in parallel with a decrease in cytochrome C release from mitochondria and caspase 3 and 7 activation in hepatic tissue. When higher, lethal doses of Jo2 were administered, TRO40303 (10 and 30 mg/kg) significantly reduced mortality by 65–90% when administered intraperitoneally (i.p.) 1 h before Jo2 injection, a time when TRO40303 plasma concentrations reached their peak. TRO40303 (30 mg/kg, i.p.) was also able to reduce mortality by 30–50% when administered 1 h postlethal Jo2 intoxication. These results suggest that TRO40303 could be a promising new therapy for the treatment or prevention of hepatitis.
doi:10.1002/prp2.144
PMCID: PMC4492760
Acute hepatitis; acute liver failure; hepatoprotection; mitochondria
2.  Translation of TRO40303 from myocardial infarction models to demonstration of safety and tolerance in a randomized Phase I trial 
Background
Although reperfusion injury has been shown to be responsible for cardiomyocytes death after an acute myocardial infarction, there is currently no drug on the market that reduces this type of injury. TRO40303 is a new cardioprotective compound that was shown to inhibit the opening of the mitochondrial permeability transition pore and reduce infarct size after ischemia-reperfusion in a rat model of cardiac ischemia-reperfusion injury.
Methods
In the rat model, the therapeutic window and the dose effect relationship were investigated in order to select the proper dose and design for clinical investigations. To evaluate post-ischemic functional recovery, TRO40303 was tested in a model of isolated rat heart. Additionally, TRO40303 was investigated in a Phase I randomized, double-blind, placebo controlled study to assess the safety, tolerability and pharmacokinetics of single intravenous ascending doses of the compound (0.5 to 13 mg/kg) in 72 healthy male, post-menopausal and hysterectomized female subjects at flow rates from 0.04 to 35 mL/min (EudraCT number: 2010-021453-39). This work was supported in part by the French Agence Nationale de la Recherche.
Results
In the vivo model, TRO40303 reduced infarct size by 40% at 1 mg/kg and by 50% at 3 and 10 mg/kg given by intravenous bolus and was only active when administered before reperfusion. Additionally, TRO40303 provided functional recovery and reduced oxidative stress in the isolated rat heart model.
These results, together with pharmacokinetic based allometry to human and non-clinical toxicology data, were used to design the Phase I trial. All the tested doses and flow rates were well tolerated clinically. There were no serious adverse events reported. No relevant changes in vital signs, electrocardiogram parameters, laboratory tests or physical examinations were observed at any time in any dose group. Pharmacokinetics was linear up to 6 mg/kg and slightly ~1.5-fold, hyper-proportional from 6 to 13 mg/kg.
Conclusions
These data demonstrated that TRO40303 can be safely administered by the intravenous route in humans at doses expected to be pharmacologically active. These results allowed evaluating the expected active dose in human at 6 mg/kg, used in a Phase II proof-of-concept study currently ongoing.
doi:10.1186/1479-5876-12-38
PMCID: PMC3923730  PMID: 24507657
Acute myocardial infarction; Functional recovery; Mitochondrial permeability transition pore; Phase I clinical trial
3.  A human RNA polymerase II subunit is encoded by a recently generated multigene family 
Background
The sequences encoding the yeast RNA polymerase II (RPB) subunits are single copy genes.
Results
While those characterized so far for the human (h) RPB are also unique, we show that hRPB subunit 11 (hRPB11) is encoded by a multigene family, mapping on chromosome 7 at loci p12, q11.23 and q22. We focused on two members of this family, hRPB11a and hRPB11b: the first encodes subunit hRPB11a, which represents the major RPB11 component of the mammalian RPB complex ; the second generates polypeptides hRPB11bα and hRPB11bβ through differential splicing of its transcript and shares homologies with components of the hPMS2L multigene family related to genes involved in mismatch-repair functions (MMR). Both hRPB11a and b genes are transcribed in all human tissues tested. Using an inter-species complementation assay, we show that only hRPB11bα is functional in yeast. In marked contrast, we found that the unique murine homolog of RPB11 gene maps on chromosome 5 (band G), and encodes a single polypeptide which is identical to subunit hRPB11a.
Conclusions
The type hRPB11b gene appears to result from recent genomic recombination events in the evolution of primates, involving sequence elements related to the MMR apparatus.
doi:10.1186/1471-2199-2-14
PMCID: PMC61041  PMID: 11747469

Results 1-3 (3)