Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Rid, raphael")
1.  PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling 
BMC Molecular Biology  2012;13:18.
The vitamin D3 receptor (VDR) is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol) on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation.
Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313), a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin) and an extrachromosomal DR3 reporter response.
These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.
PMCID: PMC3404970  PMID: 22720752
Coactivator; PIM-1 kinase; Protein-Protein interaction; Serine/Threonine kinase; Vitamin D; Vitamin D receptor
2.  Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing 
Nucleic Acids Research  2007;35(22):7514-7526.
Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.
PMCID: PMC2190697  PMID: 17986449

Results 1-2 (2)