PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  How Numbers, Nature, and Immune Status of Foxp3+ Regulatory T-Cells Shape the Early Immunological Events in Tumor Development 
The influence of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg-depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally derived) and status (naïve or activated/memory) of the regulatory T-cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T-cells (Teffs) at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of anti-tumor cells vs. tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies.
doi:10.3389/fimmu.2013.00292
PMCID: PMC3784046  PMID: 24133490
Treg; Foxp3; memory; cancer; tolerance; tumor cells; vaccination; early immune response
2.  Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation 
Introduction
Tyrosine phosphorylated signal transducer and activator of transcription 3 (pStat3) is expressed in numerous cancers and is required for mediating tumorigenesis. Autocrine and paracrine interleukin (IL)-6 signaling is the principal mechanism by which Stat3 is persistently phosphorylated in epithelial tumors including breast, lung, colon and gastric cancer. The Ras oncogene mediates cellular transformation without evidence of pStat3 in cultured cells. However, non-tyrosine phosphorylated Stat3 was shown to function as a transcriptional activator, localize to the mitochondria and regulate ATP synthesis and mediate cell migration. Here we examined the role of Stat3 in Ras mediated transformation.
Methods
Ha-rasV12 transformed mammary epithelial cells (MCF10A-Ras) cells were transduced with a Stat3shRNA, IL-6shRNA and/or treated with inhibitors of Janus kinases (JAKs) to examine the role of the IL-6 signaling pathway in Ras mediated migration, invasion and tumorigenesis.
Results
Cellular migration, invasion, anchorage independent growth and tumorigenesis were largely abrogated in the Stat3-reduced cells compared to control cells. Analysis of MCF10A-Ras tumors revealed high levels of pStat3 and interleukin-6. Tumors derived from transgenic MMTV-K-Ras mice were also found to express pStat3 and IL-6. MCF10A-Ras cells, when grown in a three-dimensional Matrigel culture system revealed the appearance of the junctional protein E-Cadherin as a consequence of reducing Stat3 levels or inhibiting Stat3 activity. Decreasing IL-6 levels in the MCF10A-Ras cells abrogated tumorigenesis and reduced cell migration. By isolating Ras-expressing primary tumors and serially passaging these cells in two-dimensional culture led to a decrease in IL-6 and pStat3 levels with the reappearance of E-Cadherin.
Conclusions
The cellular and environmental context can lead to differential IL-6/pStat3 signaling and a dependency on this cytokine and transcription factor for migration, invasion and tumorigenesis.
doi:10.1186/bcr2725
PMCID: PMC3096973  PMID: 20929542
3.  Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice  
The Journal of Clinical Investigation  2009;119(9):2648-2662.
Early responses of Tregs and effector T cells (Teffs) to their first encounter with tumor cells have been poorly characterized. Here we have shown, in both implanted and in situ–induced mouse tumor models, that the appearance of tumor cells is immediately sensed by CD44hi memory Tregs that are specific for self antigens. The rapid response of these Tregs preceded and prevented activation of naive antitumor Teffs. The relative speed of the Treg versus the Teff response within the first 2–4 days determined the outcome of the antitumor immune response: tolerance or rejection. If antitumor memory Teffs were present at the time of tumor emergence, both Tregs and Teffs were recruited and activated with memory kinetics; however, the Tregs were unable to control the Teffs, which eradicated the tumor cells. This balance between effector and regulatory responses did not depend on the number of Tregs and Teffs, but rather on their memory status. Thus, in the natural setting, dominant tolerogenic immunosurveillance by self-specific memory Tregs protects tumors, just as it protects normal tissues. More generally, our results reveal that the timing of Treg and Teff engagement, determined by their memory status, is an important mode of regulation of immune responses.
doi:10.1172/JCI36628
PMCID: PMC2735938  PMID: 19652360
4.  Seeding and Propagation of Untransformed Mouse Mammary Cells in the Lung 
Science (New York, N.Y.)  2008;321(5897):1841-1844.
The acquisition of metastatic ability by tumor cells is considered a late event in the evolution of malignant tumors. We report that untransformed mouse mammary cells that have been engineered to express the inducible oncogenic transgenes MYC and KrasD12, or polyoma middle T, and introduced into the systemic circulation of a mouse can bypass transformation at the primary site and develop into metastatic pulmonary lesions upon immediate or delayed oncogene induction. Therefore, previously untransformed mammary cells may establish residence in the lung once they have entered the bloodstream and may assume malignant growth upon oncogene activation. Mammary cells lacking oncogenic transgenes displayed a similar capacity for long-term residence in the lungs but did not form ectopic tumors.
doi:10.1126/science.1161621
PMCID: PMC2694414  PMID: 18755941
5.  Comparison of Expression Profiles of Metastatic versus Primary Mammary Tumors in MMTV-Wnt-1 and MMTV-Neu Transgenic Mice1 
Neoplasia (New York, N.Y.)  2008;10(2):118-124.
Distant metastases of human breast cancers have been suggested to be more different from each other than from their respective primary tumors, based on expression profiling. The mechanism behind this lack of similarity between individual metastases is not known. We used cDNA microarrays to determine the expression profiles of pulmonary metastases and primary mammary tumors in two distinct transgenic models expressing either the Neu or the Wnt-1 oncogene from the mouse mammary tumor virus long terminal repeat (MMTV LTR). We found that pulmonary metastases are similar to each other and to their primary tumors within the same line. However, metastases arising in one transgenic mouse line are very different from either metastases or primary tumors arising in the other line. In addition, we found that, like their primary tumors, lung metastases in Wnt-1 transgenic mice harbor both epithelial and myoepithelial tumor cells and cells that express the putative progenitor cell marker keratin 6. Our data suggest that both gene expression profiles and cellular heterogeneity are preserved after breast cancer has spread to distant sites, and that metastases are similar to each other when their primary tumors were induced by the same oncogene and from the same subset of mammary cells.
PMCID: PMC2244686  PMID: 18283333
6.  Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice 
Genome Biology  2005;6(10):R84.
cDNA microarray-derived expression profiles of MMTV-Wnt-1 and MMTV-Neu transgenic mice reveal several hundred genes to be differentially expressed at each stage of breast tumor development.
Background
In human breast cancer normal mammary cells typically develop into hyperplasia, ductal carcinoma in situ, invasive cancer, and metastasis. The changes in gene expression associated with this stepwise progression are unclear. Mice transgenic for mouse mammary tumor virus (MMTV)-Wnt-1 exhibit discrete steps of mammary tumorigenesis, including hyperplasia, invasive ductal carcinoma, and distant metastasis. These mice might therefore be useful models for discovering changes in gene expression during cancer development.
Results
We used cDNA microarrays to determine the expression profiles of five normal mammary glands, seven hyperplastic mammary glands and 23 mammary tumors from MMTV-Wnt-1 transgenic mice, and 12 mammary tumors from MMTV-Neu transgenic mice. Adipose tissues were used to control for fat cells in the vicinity of the mammary glands. In these analyses, we found that the progression of normal virgin mammary glands to hyperplastic tissues and to mammary tumors is accompanied by differences in the expression of several hundred genes at each step. Some of these differences appear to be unique to the effects of Wnt signaling; others seem to be common to tumors induced by both Neu and Wnt-1 oncogenes.
Conclusion
We described gene-expression patterns associated with breast-cancer development in mice, and identified genes that may be significant targets for oncogenic events. The expression data developed provide a resource for illuminating the molecular mechanisms involved in breast cancer development, especially through the identification of genes that are critical in cancer initiation and progression.
doi:10.1186/gb-2005-6-10-r84
PMCID: PMC1257467  PMID: 16207355
7.  Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype 
BMC Medicine  2004;2:24.
Background
MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase.
Methods
cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53-/-, MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype.
Results
We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene.
Conclusions
Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection of those cells in MMTV-Wnt1 and MMTV-Neu transgenic mice, respectively. Alternative sources of oncogenic potential, such as a second transgenic oncogene or deficiency of a tumor suppressor gene, can obviate the selective power of those secondary mutations. These observations are consistent with the notion that somatic evolution of mouse mammary tumors is influenced by the specific nature of the inherited cancer-promoting genotype.
doi:10.1186/1741-7015-2-24
PMCID: PMC446228  PMID: 15198801
8.  Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice 
Background
Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months.
Results
To better understand the role of PTEN in breast tumor development, we have crossed Pten heterozygous mice to MMTV-Wnt-1 transgenic mice that routinely develop ductal carcinomas in the mammary gland. Female Wnt-1 transgenics heterozygous for Pten developed mammary tumors earlier than Wnt-1 transgenics that were wild type for Pten. In most tumors arising in Pten heterozygotes, the Pten wild-type allele was lost, suggesting that cells lacking Pten function have a growth advantage over cells retaining a wild type allele. Tumors with LOH contained high levels of activated AKT/PKB, a downstream target of the PTEN/PI3K pathway.
Conclusions
An animal model has been developed in which the absence of Pten collaborates with Wnt-1 to induce ductal carcinoma in the mammary gland. This animal model may be useful for testing therapies specific for tumors deregulated in the PTEN/PI3K/AKT pathway.
doi:10.1186/1471-2199-2-2
PMCID: PMC29091  PMID: 11178110

Results 1-8 (8)