Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Development of a Mimotope Vaccine Targeting the Staphylococcus aureus Quorum Sensing Pathway 
PLoS ONE  2014;9(11):e111198.
A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models.
PMCID: PMC4224382  PMID: 25379726
2.  A Universal Virus-Like Particle-based Vaccine for Human Papillomavirus: Longevity of Protection and Role of Endogenous and Exogenous Adjuvants 
Vaccine  2013;31(41):4647-4654.
Antibodies targeting epitopes within the amino terminus of the minor capsid protein L2 of human papillomavirus (HPV) are broadly neutralizing against diverse HPV isolates. We have constructed bacteriophage virus-like particle (VLP)-based vaccines that display short L2 peptides and elicit high-titer and broadly protective antibody responses. Here, we further characterize two additional features of these VLP-based vaccines; the longevity of protection and the role of endogenous and exogenous adjuvants on the magnitude and characteristics of the antibody response. We show that vaccinated mice have long-lived antibody responses against L2, persisting over 18 months after vaccination. Vaccinated mice were strongly protected against infection by diverse HPV pseudoviruses over a year after immunization. We also show that exogenous and endogenous adjuvants (LPS and encapsidated single-stranded RNA) have minor effects on antibody titers. Immunization with VLPs containing encapsidated ssRNA predominantly shifts the response to a Th1, rather than a Th2-like response. Importantly, immunization with L2-VLPs (without endogenous and exogenous adjuvants) in the presence of alum hydroxide elicited a robust antibody response.
PMCID: PMC3785330  PMID: 23933337
PP7 bacteriophages; Virus-like Particles; HPV vaccine; and Adjuvants
3.  A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein 
Malaria Journal  2014;13(1):326.
The Plasmodium falciparum protein RH5 is an adhesin molecule essential for parasite invasion of erythrocytes. Recent studies show that anti-PfRH5 sera have potent invasion-inhibiting activities, supporting the idea that the PfRH5 antigen could form the basis of a vaccine. Therefore, epitopes recognized by neutralizing anti-PfRH5 antibodies could themselves be effective vaccine immunogens if presented in a sufficiently immunogenic fashion. However, the exact regions within PfRH5 that are targets of this invasion-inhibitory activity have yet to be identified.
A battery of anti-RH5 monoclonal antibodies (mAbs) were produced and screened for their potency by inhibition of invasion assays in vitro. Using an anti-RH5 mAb that completely inhibited invasion as the selecting mAb, affinity-selection using random sequence peptide libraries displayed on virus-like particles of bacteriophage MS2 (MS2 VLPs) was performed. VLPs were sequenced to identify the specific peptide epitopes they encoded and used to raise specific antisera that was in turn tested for inhibition of invasion.
Three anti-RH5 monoclonals (0.1 mg/mL) were able to inhibit invasion in vitro by >95%. Affinity-selection with one of these mAbs yielded a VLP which yielded a peptide whose sequence is identical to a portion of PfRH5 itself. The VLP displaying the peptide binds strongly to the antibody, and in immunized animals elicits an anti-PfRH5 antibody response. The resulting antisera against the specific VLP inhibit parasite invasion of erythrocytes more than 90% in vitro.
Here, data is presented from an anti-PfRH5 mAb that completely inhibits erythrocyte invasion by parasites in vitro, one of the few anti-malarial monoclonal antibodies reported to date that completely inhibits invasion with such potency, adding to other studies that highlight the potential of PfRH5 as a vaccine antigen. The specific neutralization sensitive epitope within RH5 has been identified, and antibodies against this epitope also elicit high anti-invasion activity, suggesting this epitope could form the basis of an effective vaccine against malaria.
PMCID: PMC4152569  PMID: 25135070
4.  Delivery of Ricin Toxin A-Chain by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers 
Advanced healthcare materials  2012;1(3):348-353.
PMCID: PMC4119887  PMID: 23184753
cancer; mesoporous silica nanoparticles; protein toxins; supported lipid bilayers; targeted delivery
5.  Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers 
ACS Nano  2012;6(3):2174-2188.
The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides.
PMCID: PMC3332089  PMID: 22309035
mesoporous silica nanoparticle; supported lipid bilayer; lipid nanoparticle; targeted delivery; peptide ligand; small interfering RNA; cancer
6.  VLPs Displaying a Single L2 Epitope Induce Broadly Cross-Neutralizing Antibodies against Human Papillomavirus 
PLoS ONE  2012;7(11):e49751.
Virus-like Particles (VLPs) display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV) that provides broad protection from diverse HPV types in a mouse pseudovirus infection model.
Methodology/Principal Findings
Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types.
We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.
PMCID: PMC3501453  PMID: 23185426
7.  Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-Like Particles 
ACS nano  2011;5(7):5729-5745.
Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical conjugation, facilitating the multivalent display of targeting ligands. MS2 VLPs also self-assemble in the presence of nucleic acids to specifically encapsidate siRNA and RNA-modified cargos. Here we report the use of MS2 VLPs to selectively deliver nanoparticles, chemotherapeutic drugs, siRNA cocktails, and protein toxins to human hepatocellular carcinoma (HCC). MS2 VLPs modified with a peptide (SP94) that binds HCC exhibit a 104-fold higher avidity for HCC than for hepatocytes, endothelial cells, monocytes, or lymphocytes and can deliver high concentrations of encapsidated cargo to the cytosol of HCC cells. SP94-targeted VLPs loaded with doxorubicin, cisplatin, and 5-fluorouracil selectively kill the HCC cell line, Hep3B, at drug concentrations < 1 nM, while SP94-targeted VLPs that encapsidate a siRNA cocktail, which silences expression of cyclin family members, induce growth arrest and apoptosis of Hep3B at siRNA concentrations < 150 pM. Impressively, MS2 VLPs, when loaded with ricin toxin A-chain (RTA) and modified to co-display the SP94 targeting peptide and a histidine-rich fusogenic peptide (H5WYG) that promotes endosomal escape, kill nearly 100% of Hep3B cells (1 × 106 cells/mL population) at an RTA concentration of 100 fM without affecting the viability of control cells. Our results demonstrate that MS2 VLPs, due to their tolerance of multivalent peptide display and their ability to specifically encapsidate a variety of disparate cargos, induce selective cytotoxicity of cancer in vitro and represent a significant improvement in the characteristics of VLP-based delivery systems.
PMCID: PMC3144304  PMID: 21615170
virus-like particles; multivalent peptide display; targeted drug delivery; cancer; nanoparticle; nanocarrier
8.  Peptide Epitope Identification By Affinity-Selection On Bacteriophage MS2 Virus-like Particles 
Journal of molecular biology  2011;409(2):225-237.
Filamentous phages are now the most widely used vehicles for phage display, and provide an efficient means for epitope identification. However, the peptides they display are not very immunogenic because they normally fail to present foreign epitopes at the very high densities required for efficient B-cell activation. Meanwhile, systems based on virus-like particles (VLPs) permit the engineered high-density display of specific epitopes, but are incapable of peptide library display and affinity selection. We developed a new peptide display platform based on VLPs of the RNA bacteriophage MS2. It combines the high immunogenicity of MS2 VLPs with the affinity selection capabilities of other phage display systems. Here we describe plasmid vectors that facilitate the construction of high complexity random sequence peptide libraries on MS2 VLPs and that allow control of the stringency of affinity selection through the manipulation of display valency. We used the system to identify epitopes for several previously characterized monoclonal antibody targets, and showed that the VLPs thus obtained elicit antibodies in mice whose activities mimic those of the selecting antibodies.
PMCID: PMC3095728  PMID: 21501621
virus-like particle; phage display; epitope vaccine
9.  The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers 
Nature Materials  2011;10(5):389-397.
Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability, and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma (HCC) exhibit a 10,000-fold greater affinity for HCC than for hepatocytes, endothelial cells, and immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, siRNA, and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer allow a single protocell loaded with a drug cocktail to kill a drug-resistant HCC cell, representing a 106-fold improvement over comparable liposomes.
PMCID: PMC3287066  PMID: 21499315
10.  A Pan-HPV Vaccine Based on Bacteriophage PP7 VLPs Displaying Broadly Cross-Neutralizing Epitopes from the HPV Minor Capsid Protein, L2 
PLoS ONE  2011;6(8):e23310.
Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.
Methodology/Principal Findings
L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.
VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.
PMCID: PMC3157372  PMID: 21858066
11.  Immunogenic Display of Diverse Peptides, Including a Broadly Cross-Type Neutralizing Human Papillomavirus L2 epitope, on Virus-like Particles of the RNA Bacteriophage PP7 
Vaccine  2010;28(27):4384-4393.
The immunogenicity of an antigen can be dramatically increased by displaying it in a dense, multivalent context, such as on the surface of a virus or virus-like particle (VLP). Here we describe a highly versatile VLP platform for peptide display based on VLPs of the RNA bacteriophage PP7. We show that this platform can be used for the engineered display of specific peptide sequences as well as for the construction of random peptide libraries. Peptides representing the FLAG epitope, the V3 loop of HIV gp120, and a broadly cross-type neutralizing epitope from L2, the minor capsid protein of Human Papillomavirus type 16 (HPV16), were inserted into an exposed surface loop of a form of PP7 coat protein in which the two identical polypeptides of coat were fused together to form a single-chain dimer. The recombinant proteins assembled into VLPs, displayed these peptides on their surfaces, and induced high titer antibody responses. The single-chain dimer was also highly tolerant of random 6-, 8-, and 10-amino acid insertions. PP7 VLPs displaying the HPV16 L2 epitope generated robust anti-HPV16 L2 serum antibodies after intramuscular injection that protected mice from genital infection with HPV16 pseudovirus as well as a heterologous HPV pseudovirus type, HPV45. Thus, PP7 VLPs are well-suited for the display of a wide diversity of peptides in a highly immunogenic format.
PMCID: PMC2881612  PMID: 20434554
VLP; HPV vaccine; bacteriophage
12.  Thermal Stability of RNA Phage Virus-Like Particles Displaying Foreign Peptides 
To be useful for genetic display of foreign peptides a viral coat protein must tolerate peptide insertions without major disruption of subunit folding and capsid assembly. The folding of the coat protein of RNA phage MS2 does not normally tolerate insertions in its AB-loop, but an engineered single-chain dimer readily accepts them as long as they are restricted to one of its two halves.
Here we characterize the effects of peptide insertions on the thermal stabilities of MS2 virus-like particles (VLPs) displaying a variety of different peptides in one AB-loop of the coat protein single-chain dimer. These particles typically denature at temperatures around 5-10°C lower than unmodified VLPs. Even so, they are generally stable up to about 50°C. VLPs of the related RNA phage PP7 are cross-linked with intersubunit disulfide bonds and are therefore significantly more stable. An AB-loop insertion also reduces the stability of PP7 VLPs, but they only begin to denature above about 70°C.
VLPs assembled from MS2 single-chain dimer coat proteins with peptide insertions in one of their AB-loops are somewhat less stable than the wild-type particle, but still resist heating up to about 50°C. Because they possess disulfide cross-links, PP7-derived VLPs provide an alternate platform with even higher stability.
PMCID: PMC3118325  PMID: 21609437
13.  Immunogenic Display of Diverse Peptides on Virus-Like Particles of RNA Phage MS2 
Journal of molecular biology  2008;380(1):252-263.
The high immunogenicity of peptides displayed in dense repetitive arrays on virus-like particles makes recombinant VLPs promising vaccine carriers. Here we describe a platform for vaccine development based on the VLPs of RNA bacteriophage MS2. It serves for the engineered display of specific peptide sequences, but will also allow the construction of random peptide libraries from which specific binding activities can be recovered by affinity selection. Peptides representing the V3 loop of HIV gp120 and the ECL2 loop of the HIV coreceptor, CCR5, were inserted into a surface loop of MS2 coat protein. Both insertions disrupted coat VLP assembly, apparently by interfering with protein folding, but these defects were efficiently suppressed by genetically fusing coat protein's two identical polypeptides into a single-chain dimer. The resulting VLPs displayed the V3 and ECL2 peptides on their surfaces where they showed the potent immunogenicity that is the hallmark of VLP-displayed antigens. Experiments with random-sequence peptide libraries show the single-chain dimer to be highly tolerant of 6-, 8- and 10-amino acid insertions. Not only do MS2 VLPs support the display of a wide diversity of peptides in a highly immunogenic format, but they also encapsidate the mRNAs that direct their synthesis, thus establishing the genotype/phenotype linkage necessary for recovery of affinity selected sequences. The single-chain MS2 VLP therefore unites in a single structural platform the selective power of phage display with the high immunogenicity of VLPs.
PMCID: PMC2481506  PMID: 18508079
virus-like particle; phage display; epitope vaccine
14.  Stability and assembly in vitro of bacteriophage PP7 virus-like particles 
The stability of a virus-like particle (VLP) is an important consideration for its use in nanobiotechnology. The icosahedral capsid of the RNA bacteriophage PP7 is cross-linked by disulfide bonds between coat protein dimers at its 5-fold and quasi-6-fold symmetry axes. This work determined the effects of these disulfides on the VLP's thermal stability.
Measurements of the thermal denaturation behavior of PP7 VLPs in the presence and absence of a reducing agent show that disulfide cross-links substantially stabilize them against thermal denaturation. Although dimers in the capsid are linked to one another by disulfides, the two subunits of dimers themselves are held together only by non-covalent interactions. In an effort to confer even greater stability a new cross-link was introduced by genetically fusing two coat protein monomers, thus producing a "single-chain dimer" that assembles normally into a completely cross-linked VLP. However, subunit fusion failed to increase the thermal stability of the particles, even though it stabilized the isolated dimer. As a step toward gaining control of the internal composition of the capsid, conditions that promote the assembly of PP7 coat protein dimers into virus-like particles in vitro were established.
The presence of inter-dimer disulfide bonds greatly stabilizes the PP7 virus-like particle against thermal denaturation. Covalently cross-linking the subunits of the dimers themselves by genetically fusing them through a dipeptide linker sequence, offers no further stabilization of the VLP, although it does stabilize the dimer. PP7 capsids readily assemble in vitro in a reaction that requires RNA.
PMCID: PMC2211308  PMID: 18039380
15.  A Viral Platform for Chemical Modification and Multivalent Display 
The ability to chemically modify the surfaces of viruses and virus-like particles makes it possible to confer properties that make them potentially useful in biotechnology, nanotechnology and molecular electronics applications. RNA phages (e.g. MS2) have characteristics that make them suitable scaffolds to which a variety of substances could be chemically attached in definite geometric patterns. To provide for specific chemical modification of MS2's outer surface, cysteine residues were substituted for several amino acids present on the surface of the wild-type virus particle. Some substitutions resulted in coat protein folding or stability defects, but one allowed the production of an otherwise normal virus-like particle with an accessible sulfhydryl on its surface.
PMCID: PMC169181  PMID: 12890286
16.  RNA recognition site of PP7 coat protein 
Nucleic Acids Research  2002;30(19):4138-4144.
The coat proteins of different single-strand RNA phages use a common protein tertiary structural framework to recognize different RNA hairpins and thus offer a natural model for understanding the molecular basis of RNA-binding specificity. Here we describe the RNA structural requirements for binding to the coat protein of bacteriophage PP7, an RNA phage of Pseudomonas. Its recognition specificity differs substantially from those of the coat proteins of its previously characterized relatives such as the coliphages MS2 and Qβ. Using designed variants of the wild-type RNA, and selection of binding-competent sequences from random RNA sequence libraries (i.e. SELEX) we find that tight binding to PP7 coat protein is favored by the existence of an 8 bp hairpin with a bulged purine on its 5′ side separated by 4 bp from a 6 nt loop having the sequence Pu-U-A-G/U-G-Pu. However, another structural class possessing only some of these features is capable of binding almost as tightly.
PMCID: PMC140551  PMID: 12364592
17.  Isolation of viral coat protein mutants with altered assembly and aggregation properties 
Nucleic Acids Research  2001;29(22):e113.
A method was developed to screen bacteria for synthesis of mutant proteins with altered assembly and solubility properties using bacteriophage MS2 coat protein as a model self-associating protein. Colonies expressing coat protein from a plasmid were covered with an agarose overlay under conditions that caused the lysis of some of the cells in each colony. The proteins thus liberated diffused through the overlay at rates depending on their molecular sizes. After transfer of the proteins to a nitrocellulose membrane, probing with coat protein-specific antiserum revealed spots whose sizes and intensities were related to the aggregation state of coat protein. The method was employed in the isolation of assembly defective mutants and to find soluble variants of an aggregation-prone coat protein mutant.
PMCID: PMC92581  PMID: 11713333
18.  Asymmetric interactions in the adenosine-binding pockets of the MS2 coat protein dimer 
The X-ray structure of the MS2 coat protein-operator RNA complex reveals the existence of quasi-synmetric interactions of adenosines -4 and -10 in pockets formed on different subunits of the coat protein dimer. Both pockets utilize the same five amino acid residues, namely Val29, Thr45, Ser47, Thr59, and Lys61. We call these sites the adenosine-binding pockets.
We present here a heterodimer complementation analysis of the contributions of individual A-pocket amino acids to the binding of A-4 and A-10 in different halves of the dimer. Various substitutions of A-pocket residues were introduced into one half of single-chain coat protein heterodimers where they were tested for their abilities to complement Y85H or T91I substitutions (defects in the A-4 and A-10 half-sites, respectively) present in the other dimer half.
These experiments provide functional tests of interactions predicted from structural analyses, demonstrating the importance of certain amino acid-nucleotide contacts observed in the crystal structure, and showing that others make little or no contribution to the stability of the complex. In summary, Val29 and Lys61 form important stabilizing interactions with both A-4 and A-10. Meanwhile, Ser47 and Thr59 interact primarily with A-10. The important interactions with Thr45 are restricted to A-4.
PMCID: PMC37355  PMID: 11504563

Results 1-18 (18)