Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues 
DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats.
To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals.
ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions.
DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals.
DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.
PMCID: PMC3497704  PMID: 22995226
DOR/TP53INP2; High fat diet; Genetically induced obesity; Fat tissue; Muscle tissue
2.  Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex 
The Journal of Cell Biology  2011;195(4):643-656.
The Tim50 subunit of the mitochondrial TIM23 complex contains a presequence-binding domain that is essential for viability and precursor transport across the inner membrane.
N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.
PMCID: PMC3257539  PMID: 22065641
3.  MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization 
Molecular Biology of the Cell  2012;23(2):247-257.
MINOS1/Mio10, a conserved mitochondrial protein, is required for mitochondrial inner membrane organization and cristae morphology. MINOS1/Mio10 is a novel constituent of the mitofilin/Fcj1 complex of the inner membrane, linking the morphology phenotype of the mutant to the activity of the mitochondrial inner membrane organizing complex.
The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.
PMCID: PMC3258170  PMID: 22114354
4.  Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells 
Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs) were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting.
We identified 43 genes that shifted towards the polysomal fraction (up-regulated) and 2 genes that shifted towards free mRNA fraction (down-regulated). Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3), form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa), act on the regulation of translation (eIF4B) or transcription (HSF1, IRF6, MYC, TSC22d3). Others act as chaperones (BAG3, HSPA8, HSP90ab1) or in other metabolic or signals transducing processes.
We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.
PMCID: PMC3347988  PMID: 22436005
5.  Fas/CD95-Mediated Apoptosis of Type II Cells Is Blocked by Toxoplasma gondii Primarily via Interference with the Mitochondrial Amplification Loop▿  
Infection and Immunity  2008;76(7):2905-2912.
The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria.
PMCID: PMC2446730  PMID: 18411295

Results 1-5 (5)