Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  G-quadruplex recognition activities of E. Coli MutS 
BMC Molecular Biology  2012;13:23.
Guanine quadruplex (G4 DNA) is a four-stranded structure that contributes to genome instability and site-specific recombination. G4 DNA folds from sequences containing tandemly repetitive guanines, sequence motifs that are found throughout prokaryote and eukaryote genomes. While some cellular activities have been identified with binding or processing G4 DNA, the factors and pathways governing G4 DNA metabolism are largely undefined. Highly conserved mismatch repair factors have emerged as potential G4-responding complexes because, in addition to initiating heteroduplex correction, the human homologs bind non-B form DNA with high affinity. Moreover, the MutS homologs across species have the capacity to recognize a diverse range of DNA pairing variations and damage, suggesting a conserved ability to bind non-B form DNA.
Here, we asked if E. coli MutS and a heteroduplex recognition mutant, MutS F36A, were capable of recognizing and responding to G4 DNA structures. We find by mobility shift assay that E. coli MutS binds to G4 DNA with high affinity better than binding to G-T heteroduplexes. In the same assay, MutS F36A failed to recognize G-T mismatched oligonucleotides, as expected, but retained an ability to bind to G4 DNA. Association with G4 DNA by MutS is not likely to activate the mismatch repair pathway because nucleotide binding did not promote release of MutS or MutS F36A from G4 DNA as it does for heteroduplexes. G4 recognition activities occur under physiological conditions, and we find that M13 phage harboring G4-capable DNA poorly infected a MutS deficient strain of E. coli compared to M13mp18, suggesting functional roles for mismatch repair factors in the cellular response to unstable genomic elements.
Taken together, our findings demonstrate that E. coli MutS has a binding activity specific for non-B form G4 DNA, but such binding appears independent of canonical heteroduplex repair activation.
PMCID: PMC3437207  PMID: 22747774
DNA repair; G4; Quadruplex DNA; Mismatch repair; MutS
2.  OrbId 
Mobile Genetic Elements  2012;2(4):184-192.
MicroRNAs coordinate networks of mRNAs, but predicting specific sites of interactions is complicated by the very few bases of complementarity needed for regulation. Although efforts to characterize the specific requirements for microRNA (miR) regulation have made some advances, no general model of target recognition has been widely accepted. In this work, we describe an entirely novel approach to miR target identification. The genomic events responsible for the creation of individual miR loci have now been described with many miRs now known to have been initially formed from transposable element (TE) sequences. In light of this, we propose that limiting miR target searches to transcripts containing a miR’s progenitor TE can facilitate accurate target identification. In this report we outline the methodology behind OrbId (Origin-based identification of microRNA targets). In stark contrast to the principal miR target algorithms (which rely heavily on target site conservation across species and are therefore most effective at predicting targets for older miRs), we find OrbId is particularly efficacious at predicting the mRNA targets of miRs formed more recently in evolutionary time. After defining the TE origins of > 200 human miRs, OrbId successfully generated likely target sets for 191 predominately primate-specific human miR loci. While only a handful of the loci examined were well enough conserved to have been previously evaluated by existing algorithms, we find ~80% of the targets for the oldest miR (miR-28) in our analysis contained within the principal Diana and TargetScan prediction sets. More importantly, four of the 15 OrbId miR-28 putative targets have been previously verified experimentally. In light of OrbId proving best-suited for predicting targets for more recently formed miRs, we suggest OrbId makes a logical complement to existing, conservation based, miR target algorithms.
PMCID: PMC3469430  PMID: 23087843
Alu; LINE; microRNA; miR; repetitive; target prediction; TE; transposable; UTR
3.  Repression of human activation induced cytidine deaminase by miR-93 and miR-155 
BMC Cancer  2011;11:347.
Activation Induced cytidine Deaminase (AID) targets the immunoglobulin genes of activated B cells, where it converts cytidine to uracil to induce mutagenesis and recombination. While essential for immunoglobulin gene diversification, AID misregulation can result in genomic instability and oncogenic transformation. This is classically illustrated in Burkitt's lymphoma, which is characterized by AID-induced mutation and reciprocal translocation of the c-MYC oncogene with the IgH loci. Originally thought to be B cell-specific, AID now appears to be misexpressed in several epithelial cancers, raising the specter that AID may also participate in non-B cell carcinogenesis.
The mutagenic potential of AID argues for the existence of cellular regulators capable of repressing inappropriate AID expression. MicroRNAs (miRs) have this capacity, and we have examined the publically available human AID EST dataset for miR complementarities to the human AID 3'UTR. In this work, we have evaluated the capacity of two candidate miRs to repress human AID expression in MCF-7 breast carcinoma cells.
We have discovered moderate miR-155 and pronounced miR-93 complementary target sites encoded within the human AID mRNA. Luciferase reporter assays indicate that both miR-93 and miR-155 can interact with the 3'UTR of AID to block expression. In addition, over-expression of either miR in MCF-7 cells reduces endogenous AID protein, but not mRNA, levels. Similarly indicative of AID translational regulation, depletion of either miR in MCF-7 cells increases AID protein levels without concurrent increases in AID mRNA.
Together, our findings demonstrate that miR-93 and miR-155 constitutively suppress AID translation in MCF-7 cells, suggesting widespread roles for these miRs in preventing genome cytidine deaminations, mutagenesis, and oncogenic transformation. In addition, our characterization of an obscured miR-93 target site located within the AID 3'UTR supports the recent suggestion that many miR regulations have been overlooked due to the prevalence of truncated 3'UTR annotations.
PMCID: PMC3163633  PMID: 21831295
AICDA; AID; CSR; hypermutation; microRNA; miR-93; miR-155; SHM; UTR; 3'UTR
4.  Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins 
Mobile Genetic Elements  2011;1(1):8-17.
MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3′UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify. Of note, the most enlightening aspect of miR function—the mRNAs they target—continues to be elusive. Descriptions of the molecular origins of independent miR molecules currently support the hypothesis that miR hairpin generation is based on the adjacent insertion of two related transposable elements (TEs) at one genomic locus. Thus transcription across such TE interfaces establishes many, if not the majority of functional miRs. The implications of these findings are substantial for understanding how TEs confer increased genomic fitness, describing miR transcriptional regulations and making accurate miR target predictions. In this work, we have performed a comprehensive analysis of the genomic events responsible for the formation of all currently annotated miR loci. We find that the connection between miRs and transposable elements is more significant than previously appreciated, and more broadly, supports an important role for repetitive elements in miR origin, expression and regulatory network formation. Further, we demonstrate the utility of these findings in miR target prediction. Our results greatly expand the existing repertoire of defined miR origins, detailing the formation of 2,392 of 15,176 currently recognized miR genomic loci and supporting a mobile genetic element model for the genomic establishment of functional miRs.
PMCID: PMC3190270  PMID: 22016841
LINE; microRNA; miR; miRNA; repetitive; retroelement; SINE; transposable; transposon; UTR
5.  Histone H2A and H2B Are Monoubiquitinated at AID-Targeted Loci 
PLoS ONE  2010;5(7):e11641.
Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined.
Methodology/Principal Findings
Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt's B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed VH and Sγ3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci.
Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.
PMCID: PMC2905439  PMID: 20661291
6.  High-fidelity correction of genomic uracil by human mismatch repair activities 
Deamination of cytosine to produce uracil is a common and potentially mutagenic lesion in genomic DNA. U•G mismatches occur spontaneously throughout the genome, where they are repaired by factors associated with the base excision repair pathway. U•G mismatches are also the initiating lesion in immunoglobulin gene diversification, where they undergo mutagenic processing by redundant pathways, one dependent upon uracil excision and the other upon mismatch recognition by MutSα. While UNG is well known to initiate repair of uracil in DNA, the ability of MutSα to direct correction of this base has not been directly demonstrated.
Using a biochemical assay for mismatch repair, we show that MutSα can promote efficient and faithful repair of U•G mismatches, but does not repair U•A pairs in DNA. This contrasts with UNG, which readily excises U opposite either A or G. Repair of U•G by MutSα depends upon DNA polymerase δ (pol δ), ATP, and proliferating cell nuclear antigen (PCNA), all properties of canonical mismatch repair.
These results show that faithful repair of U•G can be carried out by either the mismatch repair or base excision repair pathways. Thus, the redundant functions of these pathways in immunoglobulin gene diversification reflect their redundant functions in faithful repair. Faithful repair by either pathway is comparably efficient, suggesting that mismatch repair and base excision repair share the task of faithful repair of genomic uracil.
PMCID: PMC2606688  PMID: 18954457
7.  Transcription-coupled mutagenesis by the DNA deaminase AID 
Genome Biology  2004;5(3):211.
Evidence now shows that activation-induced deaminase (AID), wich is involved in switch recombination and somatic hypermutation, travels with RNA polymerase II to deaminate actively transcribed DNA.
Activation-induced deaminase (AID) initiates switch recombination and somatic hypermutation of immunoglobulin genes in activated B cells. Compelling evidence now shows that AID travels with RNA polymerase II to deaminate actively transcribed DNA.
PMCID: PMC395756  PMID: 15003109
8.  Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro 
Nucleic Acids Research  2002;30(3):e14.
The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G·T mismatch was achieved by placing a nick 10–40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.
PMCID: PMC100313  PMID: 11809902

Results 1-8 (8)