PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines 
BMC Molecular Biology  2012;13:25.
Background
It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation.
Methods
A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study.
Results
The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used.
Conclusions
The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates differentially both ABCB1 promoters, downregulating the upstream promoter that is responsible for active P-glycoprotein expression. These results suggest that iHDACs such as TSA may in fact potentiate the effects of antitumour drugs that are substrates of Pgp. Finally, we also demonstrate that TSA upregulates RUNDC3B mRNA independently of the ABCB1 promoter in use.
doi:10.1186/1471-2199-13-25
PMCID: PMC3441908  PMID: 22846052
2.  TGFBR1 Intralocus Epistatic Interaction as a Risk Factor for Colorectal Cancer 
PLoS ONE  2012;7(1):e30812.
In colorectal cancer (CRC), an inherited susceptibility risk affects about 35% of patients, whereas high-penetrance germline mutations account for <6% of cases. A considerable proportion of sporadic tumors could be explained by the coinheritance of multiple low-penetrance variants, some of which are common. We assessed the susceptibility to CRC conferred by genetic variants at the TGFBR1 locus. We analyzed 14 polymorphisms and the allele-specific expression (ASE) of TGFBR1 in 1025 individuals from the Spanish population. A case-control study was undertaken with 504 controls and 521 patients with sporadic CRC. Fourteen polymorphisms located at the TGFBR1 locus were genotyped with the iPLEX Gold (MassARRAY-Sequenom) technology. Descriptive analyses of the polymorphisms and haplotypes and association studies were performed with the SNPator workpackage. No relevant associations were detected between individual polymorphisms or haplotypes and the risk of CRC. The TGFBR1*9A/6A polymorphism was used for the ASE analysis. Heterozygous individuals were analyzed for ASE by fragment analysis using cDNA from normal tissue. The relative level of allelic expression was extrapolated from a standard curve. The cutoff value was calculated with Youden's index. ASE was found in 25.4% of patients and 16.4% of controls. Considering both bimodal and continuous types of distribution, no significant differences between the ASE values of patients and controls were identified. Interestingly, a combined analysis of the polymorphisms and ASE for the association with CRC occurrence revealed that ASE-positive individuals carrying one of the most common haplotypes (H2: 20.7%) showed remarkable susceptibility to CRC (RR: 5.25; 95% CI: 2.547–5.250; p<0.001) with a synergy factor of 3.7. In our study, 54.1% of sporadic CRC cases were attributable to the coinheritance of the H2 haplotype and TGFBR1 ASE. These results support the hypothesis that the allelic architecture of cancer genes, rather than individual polymorphisms, more accurately defines the CRC risk.
doi:10.1371/journal.pone.0030812
PMCID: PMC3264637  PMID: 22292045

Results 1-2 (2)