Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders 
RNA Biology  2011;8(4):565-571.
Over 20 genetic loci with abnormal expansions of short tandem repeats have been associated with human hereditary neurological diseases. Of these, specific trinucleotide repeats located in non-coding and coding regions of individual genes implicated in these disorders are strongly overrepresented. Expansions of CTG, CGG and CAG repeats are linked to, respectively, myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome (FXTAS), as well as Huntington's disease (HD) and a number of spinocerebellar ataxias (SCAs). Expanded CAG repeats in translated exons trigger the most disorders for which a protein gain-of-function mechanism has been proposed to explain neurodegeneration by polyglutamine-rich (poly-Q) proteins. However, the results of last years showed that RNA composed of mutated CAG repeats can also be toxic and contribute to pathogenesis of polyglutamine disorders through an RNA-mediated gain-of-function mechanism. This mechanism has been best characterized in the non-coding repeat disorder DM1 and is also implicated in several other diseases, such as FXTAS, spinocerebellar ataxia type 8 (SCA8), Huntington's disease-like 2 (HDL2), as well as in myotonic dystrophy type 2 (DM2), spinocerebellar ataxia type 10 (SCA10) and type 31 (SCA31). in this review, we summarize recent findings that emphasize the participation of coding mutant CAG repeat RNA in the pathogenesis of polyglutamine disorders, and we discuss the basis of an RNA gain-of-function model in non-coding diseases such as DM1, FXTAS and SCA8.
PMCID: PMC3225975  PMID: 21593608
DM1; FXTAS; MBNL sequestration; polyglutamine disorders; RNA gain-of-function; SCA8
2.  Trinucleotide repeats in human genome and exome 
Nucleic Acids Research  2010;38(12):4027-4039.
Trinucleotide repeats (TNRs) are of interest in genetics because they are used as markers for tracing genotype–phenotype relations and because they are directly involved in numerous human genetic diseases. In this study, we searched the human genome reference sequence and annotated exons (exome) for the presence of uninterrupted triplet repeat tracts composed of six or more repeated units. A list of 32 448 TNRs and 878 TNR-containing genes was generated and is provided herein. We found that some triplet repeats, specifically CNG, are overrepresented, while CTT, ATC, AAC and AAT are underrepresented in exons. This observation suggests that the occurrence of TNRs in exons is not random, but undergoes positive or negative selective pressure. Additionally, TNR types strongly determine their localization in mRNA sections (ORF, UTRs). Most genes containing exon-overrepresented TNRs are associated with gene ontology-defined functions. Surprisingly, many groups of genes that contain TNR types coding for different homo-amino acid tracts associate with the same transcription-related GO categories. We propose that TNRs have potential to be functional genetic elements and that their variation may be involved in the regulation of many common phenotypes; as such, TNR polymorphisms should be considered a priority in association studies.
PMCID: PMC2896521  PMID: 20215431
3.  RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders 
Nucleic Acids Research  2014;42(19):11849-11864.
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
PMCID: PMC4231732  PMID: 25217582
4.  Oligonucleotide-based strategies to combat polyglutamine diseases 
Nucleic Acids Research  2014;42(11):6787-6810.
Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases.
PMCID: PMC4066792  PMID: 24848018
5.  The panorama of miRNA-mediated mechanisms in mammalian cells 
Cellular and Molecular Life Sciences  2014;71(12):2253-2270.
MicroRNAs comprise a large family of short, non-coding RNAs that are present in most eukaryotic organisms and are typically involved in downregulating the expression of protein-coding genes. The detailed mechanisms of miRNA functioning in animals and plants have been under investigation for more than decade. In mammalian cells, miRNA guides the effector complex miRISC to bind with partially complementary sequences, usually within the 3′UTR of mRNAs, and inhibit protein synthesis with or without transcript degradation. In addition to these main mechanisms, several other modes of miRNA-mediated gene expression regulation have been described, but their scale and importance remain a matter of debate. In this review, we briefly summarize the pathway of miRNA precursor processing during miRNA biogenesis and continue with the description of the miRISC assembly process. Then, we present the miRNA-mediated mechanisms of gene expression regulation in detail, and we gather information concerning the proteins involved in these processes. In addition, we briefly refer to the current applications of miRNA mechanisms in therapeutic strategies. Finally, we highlight some of the remaining controversies surrounding the regulation of mammalian gene expression by miRNAs.
PMCID: PMC4031385  PMID: 24468964
miRNA; miRNA-mediated regulation of gene expression; Argonaute proteins; miRISC assembly; miRNA binding sites
6.  Self-duplexing CUG repeats selectively inhibit mutant huntingtin expression 
Nucleic Acids Research  2013;41(22):10426-10437.
Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by the expansion of the CAG repeat in the translated sequence of the HTT gene. This expansion generates a mutant huntingtin protein that contains an abnormally elongated polyglutamine tract, which, together with mutant transcript, causes cellular dysfunction. Currently, there is no curative treatment available to patients suffering from HD; however, the selective inhibition of the mutant allele expression is a promising therapeutic option. In this study, we developed a new class of CAG repeat-targeting silencing reagents that consist of self-duplexing CUG repeats. Self-duplex formation was induced through one or several U-base substitutions. A number of self-duplexing guide-strand-only short interfering RNAs have been tested through transfection into cells derived from HD patients, showing distinct activity profiles. The best reagents were highly discriminatory between the normal and mutant HTT alleles (allele selectivity) and the HTT transcript and other transcripts containing shorter CAG repeats (gene selectivity). We also demonstrated that the self-duplexing CUG repeat short interfering RNAs use the RNA interference pathway to elicit silencing, and repeat-targeting reagents showed similar activity and selectivity when expressed from short hairpin RNA vectors to achieve more durable silencing effects.
PMCID: PMC3905887  PMID: 24038471
7.  Regulation of Huntingtin Gene Expression by miRNA-137, -214, -148a, and Their Respective isomiRs 
With the advent of deep sequencing technology, a variety of miRNA length and sequence variants, termed isomiRNAs (isomiRs), have been discovered. However, the functional roles of these commonly detected isomiRs remain unknown. In this paper, we demonstrated that miRNAs regulate the expression of the HTT gene, whose mutation leads to Huntington’s disease (HD), a hereditary degenerative disorder. Specifically, we validated the interactions of canonical miRNAs, miR-137, miR-214, and miR-148a, with the HTT 3′UTR using a luciferase assay. Moreover, we applied synthetic miRNA mimics to examine whether a slight shifting of miRNA seed regions might alter the regulation of the HTT transcript. We also examined miR-137, miR-214, and miR-148a isomiRs and showed the activity of these isoforms on reporter constructs bearing appropriate sequences from the HTT 3′UTR. Hence, we demonstrated that certain 5′-end variants of miRNAs might be functional for the regulation of the same targets as canonical miRNAs.
PMCID: PMC3759948  PMID: 23965969
miRNA; isomiR; target validation; luciferase assay; huntingtin; Huntington’s disease
8.  RNA toxicity in polyglutamine disorders: concepts, models, and progress of research 
In Huntington's disease and other polyglutamine (polyQ) disorders, mutant proteins containing a long polyQ stretch are well documented as the trigger of numerous aberrant cellular processes that primarily lead to degeneration and, ultimately, the death of neuronal cells. However, mutant transcripts containing expanded CAG repeats may also be toxic and contribute to cellular dysfunction. The exact nature and importance of RNA toxicity in polyQ diseases are only beginning to be recognized, and the first insights have mainly resulted from studies using simple model systems. In this review, we briefly present the basic mechanisms of protein toxicity in polyQ disorders and RNA toxicity in myotonic dystrophy type 1 and discuss recent results suggesting that the pathogenesis of polyQ diseases may also be mediated by mutant transcripts. This review is focused on the experimental systems used thus far to demonstrate RNA toxicity in polyQ disorders and the design of new systems that will be more relevant to the human disease situation and capable of separating RNA toxicity from protein toxicity.
PMCID: PMC3659269  PMID: 23512265
Polyglutamine disorders; Triplet repeats; Toxic RNA; Neurodegenerative diseases
9.  Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I 
Molecular Neurobiology  2012;46(2):393-429.
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Electronic supplementary material
The online version of this article (doi:10.1007/s12035-012-8315-4) contains supplementary material, which is available to authorized users.
PMCID: PMC3461215  PMID: 22956270
Polyglutamine; Mouse models; Huntington’s disease; Spinocerebellar ataxia; DRPLA; SBMA
10.  Mouse Models of Polyglutamine Diseases in Therapeutic Approaches: Review and Data Table. Part II 
Molecular Neurobiology  2012;46(2):430-466.
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Electronic supplementary material
The online version of this article (doi:10.1007/s12035-012-8316-3) contains supplementary material, which is available to authorized users.
PMCID: PMC3461214  PMID: 22944909
Polyglutamine; Mouse models; Therapy; Huntington disease; Spinocerebellar ataxia; DRPLA; SBMA
11.  Crystallographic characterization of CCG repeats 
Nucleic Acids Research  2012;40(16):8155-8162.
CCG repeats are highly over-represented in exons of the human genome. Usually they are located in the 5′ UTR but are also abundant in translated sequences. The CCG repeats are associated with three tri-nucleotide repeat disorders: Huntington’s disease, myotonic dystrophy type 1 and chromosome X-linked mental retardation (FRAXE). In this study, we present two crystal structures containing double-stranded CCG repeats: one of an RNA in the native form, and one containing LNA nucleotides. Both duplexes form A-helices but with strands slipped in the 5′ (native structure) or the 3′ direction (LNA-containing structure). As a result, one of two expected C-C pairs is eliminated from the duplex. Each of the three observed C-C pairs interacts differently, forming either one weak H-bond or none. LNA nucleotides have no apparent effect on the helical parameters but the base stacking is increased compared to the native duplex and the distribution of electrostatic potential in the major groove is changed. The CCG crystal structures explain the thermodynamic fragility of CCG runs and throw light on the observation that the MBNL1 protein recognises CCG runs, as well as CUG and CAG, but not the relatively stable CGG repeats.
PMCID: PMC3439926  PMID: 22718980
12.  An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases 
RNA interference (RNAi) and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ) disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting.
Using the patient-derived cell culture models of polyQ diseases, we tested various siRNAs, and antisense reagents and assessed their silencing efficiency and allele selectivity. We showed considerable allele discrimination by several SNP targeting siRNAs based on a weak G-G or G-U pairing with normal allele and strong G-C pairing with mutant allele at the site of RISC-induced cleavage. Among the CAG repeat targeting reagents the strongest allele discrimination is achieved by miRNA-like functioning reagents that bind to their targets and inhibit their translation without substantial target cleavage. Also, morpholino analog performs well in mutant and normal allele discrimination but its efficient delivery to cells at low effective concentration still remains a challenge.
Using three cellular models of polyQ diseases and the same experimental setup we directly compared the performance of different oligonucleotide-based treatment strategies that are currently under development. Based on the results obtained by us and others we discussed the advantages and drawbacks of these strategies considering them from several different perspectives. The strategy aimed at nonallele-selective inhibiting of causative gene expression by targeting specific sequence of the implicated gene is the easiest to implement but relevant benefits are still uncertain. The gene replacement strategy that combines the nonallele-selective gene silencing with the expression of the exogenous normal allele is a logical extension of the former and it deserves to be explored further. Both allele-selective RNAi approaches challenge cellular RNA interference machinery to show its ability to discriminate between similar sequences differing in either single base substitutions or repeated sequence length. Although both approaches perform well in allele discrimination most of our efforts are focused on repeat targeting due to its potentially higher universality.
PMCID: PMC3359213  PMID: 22397573
Triplet repeats; Polyglutamine diseases; siRNA; Antisense oligonucleotides; SNP targeting; CAG repeat targeting
13.  Diced Triplets Expose Neurons to RISC 
PLoS Genetics  2012;8(2):e1002545.
PMCID: PMC3285583  PMID: 22383898
14.  The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors 
PLoS ONE  2011;6(12):e28548.
One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer.
PMCID: PMC3232248  PMID: 22163034
15.  Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target 
Nucleic Acids Research  2011;40(1):11-26.
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
PMCID: PMC3245940  PMID: 21908410
16.  CAG repeats mimic CUG repeats in the misregulation of alternative splicing 
Nucleic Acids Research  2011;39(20):8938-8951.
Mutant transcripts containing expanded CUG repeats in the untranslated region are a pathogenic factor in myotonic dystrophy type 1 (DM1). The mutant RNA sequesters the muscleblind-like 1 (MBNL1) splicing factor and causes misregulation of the alternative splicing of multiple genes that are linked to clinical symptoms of the disease. In this study, we show that either long untranslated CAG repeat RNA or short synthetic CAG repeats induce splicing aberrations typical of DM1. Alternative splicing defects are also caused by translated CAG repeats in normal cells transfected with a mutant ATXN3 gene construct and in cells derived from spinocerebellar ataxia type 3 and Huntington's disease patients. Splicing misregulation is unlikely to be caused by traces of antisense transcripts with CUG repeats, and the possible trigger of this misregulation may be sequestration of the MBNL1 protein with nuclear RNA inclusions containing expanded CAG repeat transcripts. We propose that alternative splicing misregulation by mutant CAG repeats may contribute to the pathological features of polyglutamine disorders.
PMCID: PMC3203611  PMID: 21795378
17.  Cellular toxicity of expanded RNA repeats: focus on RNA foci 
Human Molecular Genetics  2011;20(19):3811-3821.
Discrete and punctate nuclear RNA foci are characteristic molecular hallmarks of pathogenesis in myotonic dystrophy type 1 and type 2. Intranuclear RNA inclusions of distinct morphology have also been found in fragile X-associated tremor ataxia syndrome, Huntington's disease-like 2, spinocerebellar ataxias type 8, type 10 and type 31. These neurological diseases are associated with the presence of abnormally long simple repeat expansions in their respective genes whose expression leads to the formation of flawed transcripts with altered metabolisms. Expanded CUG, CCUG, CGG, CAG, AUUCU and UGGAA repeats are associated with the diseases and accumulate in nuclear foci, as demonstrated in variety of cells and tissues of human and model organisms. These repeat RNA foci differ in size, shape, cellular abundance and protein composition and their formation has a negative impact on cellular functions. This review summarizes the efforts of many laboratories over the past 15 years to characterize nuclear RNA foci that are recognized as important triggers in the mutant repeat RNA toxic gain-of-function mechanisms of pathogenesis in neurological disorders.
PMCID: PMC3168290  PMID: 21729883
18.  The role of the precursor structure in the biogenesis of microRNA 
Cellular and Molecular Life Sciences  2011;68(17):2859-2871.
The human genome contains more than 1,000 microRNA (miRNA) genes, which are transcribed mainly by RNA polymerase II. The canonical pathway of miRNA biogenesis includes the nuclear processing of primary transcripts (pri-miRNAs) by the ribonuclease Drosha and further cytoplasmic processing of pre-miRNAs by the ribonuclease Dicer. This review discusses the issue of miRNA end heterogeneity generated primarily by Drosha and Dicer cleavage and focuses on the structural aspects of the Dicer step of miRNA biogenesis. We examine the structures of miRNA precursors, both predicted and experimentally determined, as well as the influence of various motifs that disturb the regularity of pre-miRNA structure on Dicer cleavage specificity. We evaluate the structural determinants of the length diversity of miRNA generated by Dicer from different precursors and highlight the importance of asymmetrical motifs. Finally, we discuss the impact of Dicer protein partners on cleavage efficiency and specificity and propose the contribution of pre-miRNA structural plasticity to the dynamics of the dicing complex.
PMCID: PMC3155042  PMID: 21607569
Precursor structure; Dicer structure; Dicer cleavage; Drosha cleavage; miRNA end heterogeneity; miRNA length diversity
19.  Crystal structures of CGG RNA repeats with implications for fragile X-associated tremor ataxia syndrome 
Nucleic Acids Research  2011;39(16):7308-7315.
The CGG repeats are present in the 5′-untranslated region (5′-UTR) of the fragile X mental retardation gene FMR1 and are associated with two diseases: fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X syndrome (FXS). FXTAS occurs when the number of repeats is 55–200 and FXS develops when the number exceeds 200. FXTAS is an RNA-mediated disease in which the expanded CGG tracts form stable structures and sequester important RNA binding proteins. We obtained and analysed three crystal structures of double-helical CGG repeats involving unmodified and 8-Br modified guanosine residues. Despite the presence of the non-canonical base pairs, the helices retain an A-form. In the G–G pairs one guanosine is always in the syn conformation, the other is anti. There are two hydrogen bonds between the Watson–Crick edge of G(anti) and the Hoogsteen edge of G(syn): O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows affinity for binding ions in the major groove. G(syn) causes local unwinding of the helix, compensated elsewhere along the duplex. CGG helical structures appear relatively stable compared with CAG and CUG tracts. This could be an important factor in the RNA’s ligand binding affinity and specificity.
PMCID: PMC3167596  PMID: 21596781
20.  Trinucleotide repeats: triggers for genomic disorders? 
Genome Medicine  2010;2(4):29.
Among the various sequence repeats that shape the human genome, trinucleotide repeats have attracted special interest as a result of their involvement in a class of human genetic disorders known as triplet repeat expansion diseases. Recently, long TGG repeat tracts were shown to be implicated in a genomic disorder resulting from chromosome 14q32.2 deletion. Various different mechanisms might trigger this deletion, and looking at the problem from a structural biology perspective may help. Deeper insight into repeated sequences and their features may shed light on the mechanisms involved in this microdeletion and similar genomic rearrangements.
PMCID: PMC2873807  PMID: 20441603
21.  Northern blotting analysis of microRNAs, their precursors and RNA interference triggers 
BMC Molecular Biology  2011;12:14.
Numerous microRNAs (miRNAs) have heterogeneous ends resulting from imprecise cleavages by processing nucleases and from various non-templated nucleotide additions. The scale of miRNA end-heterogeneity is best shown by deep sequencing data revealing not only the major miRNA variants but also those that occur in only minute amounts and are unlikely to be of functional importance. All RNA interference (RNAi) technology reagents that are expressed and processed in cells are also exposed to the same machinery generating end-heterogeneity of the released short interfering RNAs (siRNAs) or miRNA mimetics.
In this study we have analyzed endogenous and exogenous RNAs in the range of 20-70 nt by high-resolution northern blotting. We have validated the results obtained with northern blotting by comparing them with data derived from miRNA deep sequencing; therefore we have demonstrated the usefulness of the northern blotting technique in the investigation of miRNA biogenesis, as well as in the characterization of RNAi technology reagents.
The conventional northern blotting enhanced to high resolution may be a useful adjunct to other miRNA discovery, detection and characterization methods. It provides quantitative data on distribution of major length variants of abundant endogenous miRNAs, as well as on length heterogeneity of RNAi technology reagents expressed in cells.
PMCID: PMC3080303  PMID: 21481235
22.  Copy number variation of microRNA genes in the human genome 
BMC Genomics  2011;12:183.
MicroRNAs (miRNAs) are important genetic elements that regulate the expression of thousands of human genes. Polymorphisms affecting miRNA biogenesis, dosage and target recognition may represent potentially functional variants. The functional consequences of single nucleotide polymorphisms (SNPs) within critical miRNA sequences and outside of miRNA genes were previously demonstrated using both experimental and computational methods. However, little is known about how copy number variations (CNVs) affect miRNA genes.
In this study, we analyzed the co-localization of all miRNA loci with known CNV regions. Using bioinformatic tools we identified and validated 209 copy number variable miRNA genes (CNV-miRNAs) in CNV regions deposited in Database of Genomic Variations (DGV) and 11 CNV-miRNAs in two sets of CNVs defined as highly polymorphic. We propose potential mechanisms of CNV-mediated variation of functional copies of miRNAs (dosage) for different types of CNVs overlapping miRNA genes. We also showed that, consistent with their essential biological functions, miRNA loci are underrepresented in highly polymorphic and well-validated CNV regions.
We postulate that CNV-miRNAs are potential functional variants and should be considered high priority candidate variants in genotype-phenotype association studies.
PMCID: PMC3087710  PMID: 21486463
23.  Inhibition of mutant huntingtin expression by RNA duplex targeting expanded CAG repeats 
Nucleic Acids Research  2011;39(13):5578-5585.
The specific silencing of the gene of interest is the major objective of RNA interference technology; therefore, unique sequences but not abundant sequence repeats are targeted by silencing reagents. Here, we describe the targeting of expanded CAG repeats that occur in transcripts derived from the mutant allele of the gene implicated in Huntington’s disease (HD) in the presence of the normal allele and other human mRNAs containing CAG and CUG repeat tracts. We show that a high degree of silencing selectivity may be achieved between the repeated sequences. We demonstrate preferential suppression of the mutant huntingtin allele and concomitant activation of the normal huntingtin allele in cell lines derived from HD patients that were transfected with short RNA duplexes composed of CAG and CUG repeats containing mutations at specific positions. These effects may lead to promising therapeutic modalities for HD, a condition for which no therapy presently exists.
PMCID: PMC3141264  PMID: 21427085
24.  Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference 
Nucleic Acids Research  2011;39(9):3852-3863.
The CAG repeat expansions that occur in translated regions of specific genes can cause human genetic disorders known as polyglutamine (poly-Q)-triggered diseases. Huntington’s disease and spinobulbar muscular atrophy (SBMA) are examples of these diseases in which underlying mutations are localized near other trinucleotide repeats in the huntingtin (HTT) and androgen receptor (AR) genes, respectively. Mutant proteins that contain expanded polyglutamine tracts are well-known triggers of pathogenesis in poly-Q diseases, but a toxic role for mutant transcripts has also been proposed. To gain insight into the structural features of complex triplet repeats of HTT and AR transcripts, we determined their structures in vitro and showed the contribution of neighboring repeats to CAG repeat hairpin formation. We also demonstrated that the expanded transcript is retained in the nucleus of human HD fibroblasts and is colocalized with the MBNL1 protein. This suggests that the CAG repeats in the HTT mRNA adopt ds-like RNA conformations in vivo. The intracellular structure of the CAG repeat region of mutant HTT transcripts was not sufficiently stable to be protected from cleavage by an siRNA targeting the repeats and the silencing efficiency was higher for the mutant transcript than for its normal counterpart.
PMCID: PMC3089464  PMID: 21247881
25.  Mouse Ataxin-3 Functional Knock-Out Model 
Neuromolecular Medicine  2010;13(1):54-65.
Spinocerebellar ataxia 3 (SCA3) is a genetic disorder resulting from the expansion of the CAG repeats in the ATXN3 gene. The pathogenesis of SCA3 is based on the toxic function of the mutant ataxin-3 protein, but the exact mechanism of the disease remains elusive. Various types of transgenic mouse models explore different aspects of SCA3 pathogenesis, but a knock-in humanized mouse has not yet been created. The initial aim of this study was to generate an ataxin-3 humanized mouse model using a knock-in strategy. The human cDNA for ataxin-3 containing 69 CAG repeats was cloned from SCA3 patient and introduced into the mouse ataxin-3 locus at exon 2, deleting it along with exon 3 and intron 2. Although the human transgene was inserted correctly, the resulting mice acquired the knock-out properties and did not express ataxin-3 protein in any analyzed tissues, as confirmed by western blot and immunohistochemistry. Analyses of RNA expression revealed that the entire locus consisting of human and mouse exons was expressed and alternatively spliced. We detected mRNA isoforms composed of exon 1 spliced with mouse exon 4 or with human exon 7. After applying 37 PCR cycles, we also detected a very low level of the correct exon 1/exon 2 isoform. Additionally, we confirmed by bioinformatic analysis that the structure and power of the splicing site between mouse intron 1 and human exon 2 (the targeted locus) was not changed compared with the native mouse locus. We hypothesized that these splicing aberrations result from the deletion of further splicing sites and the presence of a strong splicing site in exon 4, which was confirmed by bioinformatic analysis. In summary, we created a functional ataxin-3 knock-out mouse model that is viable and fertile and does not present a reduced life span. Our work provides new insights into the splicing characteristics of the Atxn3 gene and provides useful information for future attempts to create knock-in SCA3 models.
Electronic supplementary material
The online version of this article (doi:10.1007/s12017-010-8137-3) contains supplementary material, which is available to authorized users.
PMCID: PMC3044828  PMID: 20945165
Ataxin-3; Mouse model; Knock-in; Knock-out; CAG repeats; Splicing

Results 1-25 (34)