PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Expression of c-myc is not critical for cell proliferation in established human leukemia lines 
Background
A study was undertaken to resolve preliminary conflicting results on the proliferation of leukemia cells observed with different c-myc antisense oligonucleotides.
Results
RNase H-active, chimeric methylphosphonodiester / phosphodiester antisense oligodeoxynucleotides targeting bases 1147–1166 of c-myc mRNA downregulated c-Myc protein and induced apoptosis and cell cycle arrest respectively in cultures of MOLT-4 and KYO1 human leukemia cells. In contrast, an RNase H-inactive, morpholino antisense oligonucleotide analogue 28-mer, simultaneously targeting the exon 2 splice acceptor site and initiation codon, reduced c-Myc protein to barely detectable levels but did not affect cell proliferation in these or other leukemia lines. The RNase H-active oligodeoxynucleotide 20-mers contained the phosphodiester linked motif CGTTG, which as an apoptosis inducing CpG oligodeoxynucleotide 5-mer of sequence type CGNNN (N = A, G, C, or T) had potent activity against MOLT-4 cells. The 5-mer mimicked the antiproliferative effects of the 20-mer in the absence of any antisense activity against c-myc mRNA, while the latter still reduced expression of c-myc in a subline of MOLT-4 cells that had been selected for resistance to CGTTA, but in this case the oligodeoxynucleotide failed to induce apoptosis or cell cycle arrest.
Conclusions
We conclude that the biological activity of the chimeric c-myc antisense 20-mers resulted from a non-antisense mechanism related to the CGTTG motif contained within the sequence, and not through downregulation of c-myc. Although the oncogene may have been implicated in the etiology of the original leukemias, expression of c-myc is apparently no longer required to sustain continuous cell proliferation in these culture lines.
doi:10.1186/1471-2199-2-13
PMCID: PMC60647  PMID: 11734062
2.  Oligodeoxynucleotide 5mers containing a 5′-CpG induce apoptosis through a mitochondrial mechanism in T lymphocytic leukaemia cells 
Nucleic Acids Research  2000;28(11):2242-2250.
A chimeric methylphosphonodiester/phosphodiester 15mer oligodeoxynucleotide of randomly selected sequence was observed to rapidly induce apoptosis in MOLT-4 and Jurkat E6 T lymphocytic leukaemia cells following intracytoplasmic delivery. A series of further methylphosphonate substitutions and mutations and truncations of the oligodeoxynucleotide served to establish that the phosphodiester-linked sequence CGGTA present in the 15mer was responsible for this biological activity. End-protected CpG oligodeoxynucleotide 5mers of sequence type CGNNN exhibited a range of apoptosis-inducing potencies, with CGTTA being the most active. The latter was shown to significantly reduce the rate of RNA synthesis in MOLT-4 cells within 1 h; DNA laddering and redistribution of phosphatidylserine to the outer surface of the plasma membrane were marked by 160 min and mitochondrial transmembrane potential collapsed over roughly the same time scale. Pro-caspase 8 was reduced within 130 min and the proteolytically activated caspase 8 substrate Bid was also down by this time, implicating release of cytochrome c from mitochondria by the active 15 kDa fragment of Bid. Substantial proteolytic activation of pro-caspase 3 was relatively delayed. These findings support a mitochondrial amplification mechanism for apoptosis triggered by CpG 5mers.
PMCID: PMC102630  PMID: 10871345

Results 1-2 (2)