PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Pediatric Solid Tumors 
PLoS ONE  2014;9(1):e86843.
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.
doi:10.1371/journal.pone.0086843
PMCID: PMC3907427  PMID: 24497984
2.  Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Neuroblastoma 
PLoS ONE  2013;8(10):e77753.
Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma.
doi:10.1371/journal.pone.0077753
PMCID: PMC3795073  PMID: 24130898
3.  Orally Active Adenosine A1 Receptor Agonists with Antinociceptive Effects in Mice 
Journal of medicinal chemistry  2012;55(14):6467-6477.
Adenosine A1 receptor (A1AR) agonists have antinociceptive effects in multiple preclinical models of acute and chronic pain. Although numerous A1AR agonists have been developed, clinical applications of these agents have been hampered by their cardiovascular side effects. Herein we report a series of novel A1AR agonists, some of which are structurally related to adenosine 5′-monophosphate (5′-AMP), a naturally occurring nucleotide that itself activates A1AR. These novel compounds potently activate A1AR in several orthogonal in vitro assays and are subtype selective for A1AR over A2AAR, A2BAR, and A3AR. Among them, UNC32A (3a) is orally active and has dose-dependent antinociceptive effects in wild-type mice. The antinociceptive effects of 3a were completely abolished in A1AR knockout mice, revealing a strict dependence on A1AR for activity. The apparent lack of cardiovascular side effects when administered orally and high affinity (Ki of 36 nM for the human A1AR) make this compound potentially suitable as a therapeutic.
doi:10.1021/jm3004834
PMCID: PMC3501123  PMID: 22738238
4.  Preclinical Evaluation of a Genetically Engineered Herpes Simplex Virus Expressing Interleukin-12 
Journal of Virology  2012;86(9):5304-5313.
Herpes simplex virus 1 (HSV-1) mutants that lack the γ134.5 gene are unable to replicate in the central nervous system but maintain replication competence in dividing cell populations, such as those found in brain tumors. We have previously demonstrated that a γ134.5-deleted HSV-1 expressing murine interleukin-12 (IL-12; M002) prolonged survival of immunocompetent mice in intracranial models of brain tumors. We hypothesized that M002 would be suitable for use in clinical trials for patients with malignant glioma. To test this hypothesis, we (i) compared the efficacy of M002 to three other HSV-1 mutants, R3659, R8306, and G207, in murine models of brain tumors, (ii) examined the safety and biodistribution of M002 in the HSV-1-sensitive primate Aotus nancymae following intracerebral inoculation, and (iii) determined whether murine IL-12 produced by M002 was capable of activating primate lymphocytes. Results are summarized as follows: (i) M002 demonstrated superior antitumor activity in two different murine brain tumor models compared to three other genetically engineered HSV-1 mutants; (ii) no significant clinical or magnetic resonance imaging evidence of toxicity was observed following direct inoculation of M002 into the right frontal lobes of A. nancymae; (iii) there was no histopathologic evidence of disease in A. nancymae 1 month or 5.5 years following direct inoculation; and (iv) murine IL-12 produced by M002 activates A. nancymae lymphocytes in vitro. We conclude that the safety and preclinical efficacy of M002 warrants the advancement of a Δγ134.5 virus expressing IL-12 to phase I clinical trials for patients with recurrent malignant glioma.
doi:10.1128/JVI.06998-11
PMCID: PMC3347348  PMID: 22379082
5.  Prostatic Acid Phosphatase Is Required for the Antinociceptive Effects of Thiamine and Benfotiamine 
PLoS ONE  2012;7(10):e48562.
Thiamine (Vitamin B1) is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT)–a phosphorylated derivative of thiamine–have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP) can dephosphorylate BT in vitro, in dorsal root ganglia (DRG) neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT) then decomposes to O-benzoylthiamine (O-BT) and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP) and thiamine–a compound that is not phosphorylated–were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap−/− mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP.
doi:10.1371/journal.pone.0048562
PMCID: PMC3485352  PMID: 23119057
6.  Optimizing Promoters for Recombinant Adeno-Associated Virus-Mediated Gene Expression in the Peripheral and Central Nervous System Using Self-Complementary Vectors 
Human Gene Therapy  2011;22(9):1143-1153.
Abstract
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. Gray and colleagues report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells, compared with cells in which gene expression is controlled by the CMV or CBA promoter. In addition, the group has developed a short, 229-bp neuronal promoter derived from the MeCP2 transcription factor. This promoter allows for an extra 570 bp in packaging capacity and provides low and neuronal-specific expression within the CNS.
doi:10.1089/hum.2010.245
PMCID: PMC3177952  PMID: 21476867
7.  Posttranscriptional Control of Type I Interferon Genes by KSRP in the Innate Immune Response against Viral Infection ▿ 
Molecular and Cellular Biology  2011;31(16):3196-3207.
Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3′ untranslated regions. Expression of ARE-containing type I interferon transcripts is robustly induced upon viral infection and rapidly shut off thereafter. Their transient accumulation is partly mediated through posttranscriptional regulation. Here we show that mouse embryonic fibroblasts derived from knockout mice deficient in KH-type splicing regulatory protein (KSRP), an RNA-binding protein required for ARE-mediated mRNA decay, produce higher levels of Ifna and Ifnb mRNAs in response to viral infection as a result of decreased mRNA decay. Functional analysis showed that KSRP is required for the decay of Ifna4 and Ifnb mRNAs by interaction with AREs. The increased IFN expression renders Ksrp−/− cells refractory to herpes simplex virus type 1 and vesicular stomatitis virus infection. These findings support a role of a posttranscriptional mechanism in the control of type I IFN expression and highlight the function of KSRP in innate immunity by negatively regulating IFN production.
doi:10.1128/MCB.05073-11
PMCID: PMC3147801  PMID: 21690298
8.  Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L) 
Behavioral ecology and sociobiology  2008;62(10):1621-1631.
Honeybee colonies are highly integrated functional units characterized by a pronounced division of labor. Division of labor among workers is mainly age-based, with younger individuals focusing on in-hive tasks and older workers performing the more hazardous foraging activities. Thus, experimental disruption of the age composition of the worker hive population is expected to have profound consequences for colony function. Adaptive demography theory predicts that the natural hive age composition represents a colony-level adaptation and thus results in optimal hive performance. Alternatively, the hive age composition may be an epiphenomenon, resulting from individual life history optimization. We addressed these predictions by comparing individual worker longevity and brood production in hives that were composed of a single age cohort, two distinct age cohorts, and hives that had a continuous, natural age distribution. Four experimental replicates showed that colonies with a natural age composition did not consistently have a higher life expectancy and/or brood production than the single cohort or double cohort hives. Instead, a complex interplay of age structure, environmental conditions, colony size, brood production, and individual mortality emerged. A general trade-off between worker life expectancy and colony productivity was apparent, and the transition from in-hive tasks to foraging was the most significant predictor of worker lifespan irrespective of the colony age structure. We conclude that the natural age structure of honeybee hives is not a colony-level adaptation. Furthermore, our results show that honeybees exhibit pronounced demographic plasticity in addition to behavioral plasticity to react to demographic disturbances of their societies.
doi:10.1007/s00265-008-0591-7
PMCID: PMC2440700  PMID: 18663386
Aging; Mortality; Social Insects; Division of Labor; Homeostasis; Colony Productivity; Biodemography
9.  Cap-independent translation through the p27 5′-UTR 
Nucleic Acids Research  2007;35(14):4767-4778.
Several recent publications have explored cap-independent translation through an internal ribosome entry site (IRES) in the 5′-UTR of the mRNA encoding the cyclin-dependent kinase inhibitor p27. The major experimental tool used in these reports was the use of bicistronic reporter constructs in which the 5′-UTR was inserted between the upstream and downstream cistrons. None of these reports has completely ruled out the possibility that the 5′-UTR has either cryptic promoter activity or a cryptic splice acceptor site. Either of these possibilities could result in expression of a monocistronic mRNA encoding the downstream cistron and false identification of an IRES. Indeed, Liu et al. recently published data suggesting that the p27 5′-UTR harbors cryptic promoter activity which accounts for its putative IRES activity. In this report, we have explored this potential problem further using promoterless bicistronic constructs coupled with RNase protection assays, siRNA knockdown of individual cistrons, RT-PCR to detect mRNA encoded by the bicistronic reporter with high sensitivity, direct transfection of bicistronic mRNAs, and insertion of an iron response element into the bicistronic reporter. The results do not support the conclusion that the p27 5′-UTR has significant functional promoter activity or cryptic splice sites, but rather that it is able to support cap-independent initiation of translation.
doi:10.1093/nar/gkm512
PMCID: PMC1950543  PMID: 17617641
10.  Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells 
Background
Eukaryotic initiation factor 4E (eIF4E) is essential for cap-dependent initiation of translation. Cell proliferation is associated with increased activity of eIF4E and elevated expression of eIF4E leads to tumorigenic transformation. Many tumors express very high levels of eIF4E and this may be a critical factor in progression of the disease. In contrast, overexpression of 4EBP, an inhibitor of eIF4E, leads to cell cycle arrest and phenotypic reversion of some transformed cells.
Results
A constitutively active form of 4EBP-1 was inducibly expressed in the human breast cancer cell line MCF7. Induction of constitutively active 4EBP-1 led to cell cycle arrest. This was not associated with a general inhibition of protein synthesis but rather with changes in specific cell cycle regulatory proteins. Cyclin D1 was downregulated while levels of the CDK inhibitor p27Kip1 were increased. The levels of cyclin E and CDK2 were unaffected but the activity of CDK2 was significantly reduced due to increased association with p27Kip1. The increase in p27Kip1 did not reflect changes in p27Kip1 mRNA or degradation rates. Rather, it was associated with enhanced synthesis of the protein, even though 4EBP-1 is expected to inhibit translation. This could be explained, at least in part, by the ability of the p27Kip1 5'-UTR to mediate cap-independent translation, which was also enhanced by expression of constitutively active 4EBP-1.
Conclusions
Expression of active 4EBP-1 in MCF7 leads to cell cycle arrest which is associated with downregulation of cyclin D1 and upregulation of p27Kip1. Upregulation of p27Kip1reflects increased synthesis which corresponds to enhanced cap-independent translation through the 5'-UTR of the p27Kip1 mRNA.
doi:10.1186/1475-2867-3-2
PMCID: PMC151675  PMID: 12633504
11.  The major transcription initiation site of the p27Kip1 gene is conserved in human and mouse and produces a long 5'-UTR 
Background
The cyclin-dependent kinase inhibitor p27Kip1 is essential for proper control of cell cycle progression. The levels of p27Kip1 are regulated by several mechanisms including transcriptional and translational controls. In order to delineate the molecular details of these regulatory mechanisms it is important to identify the transcription initiation site within the p27Kip1 gene, thereby defining the promoter region of the gene and the 5'-untranslated region of the p27Kip1 mRNA. Although several previous studies have attempted to map p27Kip1 transcription start sites, the results vary widely for both the mouse and human genes. In addition, even though the mouse and human p27Kip1 gene sequences are very highly conserved, the reported start sites are notably different.
Results
In this report, using a method that identifies capped ends of mRNA molecules together with RNase protection assays, we demonstrate that p27Kip1 transcription is initiated predominantly from a single site which is conserved in the human and mouse genes. Initiation at this site produces a 5'-untranslated region of 472 nucleotides in the human p27Kip1 mRNA and 502 nucleotides in the mouse p27Kip1 mRNA. In addition, several minor transcription start sites were identified for both the mouse and human genes.
Conclusions
These results demonstrate that the major transcription initiation sites in the mouse and human p27Kip1 genes are conserved and that the 5'-UTR of the p27Kip1 mRNA is much longer than generally believed. It will be important to consider these findings when designing experiments to identify elements that are involved in regulating the cellular levels of p27Kip1.
doi:10.1186/1471-2199-2-12
PMCID: PMC59625  PMID: 11696240

Results 1-11 (11)