Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade 
Oncotarget  2015;6(19):17097-17106.
It is increasingly clear that the biological functions of a transcription factor cannot be fully understood solely on the basis of protein-coding genes that fall under its control. Many transcription factors regulate expression of miRNAs, which affect the cell by modulating translation and stability of mRNAs. The identities and the roles of NF-κB-regulated miRNAs have been attracting research interest for a long time. We revisited this issue in a system with controlled expression of one of the key regulators of NF-κB, RIPK1. Several regulated miRNAs were identified, including miR-146a, miR-215 and miR-497. The miRNAs were also inducible by IL-1β, but not when NF-κB activity was repressed by mutant IκBα. The presence of a miR-497 site was predicted in the 3′-UTR of IKBKB gene, which encodes IKKβ. Using appropriately engineered reporters, we confirmed that this site can be a target of suppressive action of miR-497. Our findings suggest that NF-κB controls expression of a miRNA, which may reduce production of IKKβ. Considering the role of IKKβ in the canonical pathway of NF-κB activation, our observations may indicate a new mechanism that modulates the magnitude of such activation, as well as the propensity of a cell to engage canonical vs. non-canonical pathways.
PMCID: PMC4627294  PMID: 26020802
RIPK1; miR-497; miR-146a; miR-215; IKKβ
2.  FOXO1 regulates expression of a microRNA cluster on X chromosome 
Aging (Albany NY)  2013;5(5):347-356.
Phosphoinositol-3-kinase (PI3K) pathway is a crucial modulator of many physiological and pathophysiological phenomena, including aging, diabetes and cancer. Protein kinase Akt, a downstream effector of PI3K, controls a plethora of cellular functions, including gene transcription. A key mechanism connecting Akt activity to changes in gene expression is inhibitory phosphorylation of FOXO family of transcription factors. Accordingly, altered expression of FOXO targets may account for many biological consequences of PI3K/Akt signaling. While the previous efforts focused on FOXO-dependent regulation of protein-coding genes, non-coding RNA genes have emerged as equally important targets of many transcription factors. Therefore, we utilized a regulated form of FOXO1 to profile FOXO1-dependent changes in miRNA expression in human cells. Both microarray hybridization and next-generation sequencing revealed changes in the products of a miRNA cluster on X chromosome. Rapid induction of these miRNAs occurred independently of de novo protein synthesis. Furthermore, inhibition of PI3K in cancer cell lines caused derepression of these miRNAs, as would be expected for FOXO-regulated genes. Members of the major oncogenic cascades are significantly overrepresented among the predicted targets of the miRNAs, consistent with tumor-suppressive role of FOXO1. The discovered miRNAs represent new candidate mediators of FOXO1 functions and possible biomarkers of its activity.
PMCID: PMC3701110  PMID: 23748164
the forkhead family of transcription factors; mir; miRNA; oncotarget; cancer
3.  Chromatin architectures at fission yeast transcriptional promoters and replication origins 
Nucleic Acids Research  2012;40(15):7176-7189.
We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, ∼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs—a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms.
PMCID: PMC3424540  PMID: 22573177
4.  Standardized collection of MNase-seq experiments enables unbiased dataset comparisons 
BMC Molecular Biology  2012;13:15.
The organization of eukaryotic DNA into chromatin has a strong influence on the accessibility and regulation of genetic information. The locations and occupancies of a principle component of chromatin, nucleosomes, are typically assayed through use of enzymatic digestion with micrococcal nuclease (MNase). MNase is an endo-exo nuclease that preferentially digests naked DNA and the DNA in linkers between nucleosomes, thus enriching for nucleosome-associated DNA. To determine nucleosome organization genome-wide, DNA remaining from MNase digestion is sequenced using high-throughput sequencing technologies (MNase-seq). Unfortunately, the results of MNase-seq can vary dramatically due to technical differences and this confounds comparisons between MNase-seq experiments, such as examining condition-dependent chromatin organizations.
In this study we use MNase digestion simulations to demonstrate how MNase-seq signals can vary for different nucleosome configuration when experiments are performed with different extents of MNase digestion. Signal variation in these simulations reveals an important DNA sampling bias that results from a neighborhood effect of MNase digestion techniques. The presence of this neighborhood effect ultimately confounds comparisons between different MNase-seq experiments. To address this issue we present a standardized chromatin preparation which controls for technical variance between MNase-based chromatin preparations and enables the collection of similarly sampled (matched) chromatin populations. Standardized preparation of chromatin includes a normalization step for DNA input into MNase digestions and close matching of the extent of digestion between each chromatin preparation using gel densitometry analysis. The protocol also includes directions for successful pairing with multiplex sequencing reactions.
We validated our method by comparing the experiment-to-experiment variation between biological replicates of chromatin preparations from S. cerevisiae. Results from our matched preparation consistently produced MNase-seq datasets that were more closely correlated than other unstandardized approaches. Additionally, we validated the ability of our approach at enabling accurate downstream comparisons of chromatin structures, by comparing the specificity of detecting Tup1-dependent chromatin remodeling events in comparisons between matched and un-matched wild-type and tup1Δ MNase-seq datasets. Our matched MNase-seq datasets demonstrated a significant reduction in non-specific (technical) differences between experiments and were able to maximize the detection of biologically-relevant (Tup1-dependent) changes in chromatin structure.
PMCID: PMC3464627  PMID: 22559821
Next-generation sequencing; High-throughput sequencing; Chromatin; Nucleosomes; Histones; MNase-seq; Micrococcal nuclease (MNase)

Results 1-4 (4)