Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Adaptation of the Wine Bacterium Oenococcus oeni to Ethanol Stress: Role of the Small Heat Shock Protein Lo18 in Membrane Integrity 
Applied and Environmental Microbiology  2014;80(10):2973-2980.
Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality control. Here, we investigated the interaction between Lo18 and four types of liposomes: one was prepared from O. oeni grown under optimal growth conditions (here, control liposomes), one was prepared from O. oeni grown in the presence of 8% ethanol (here, ethanol liposomes), one was prepared from synthetic phospholipids, and one was prepared from phospholipids from Bacillus subtilis or Lactococcus lactis. We observed the strongest interaction between Lo18 and control liposomes. The lipid binding activity of Lo18 required the dissociation of oligomeric structures into dimers. Protein protection experiments carried out in the presence of the liposomes from O. oeni suggested that Lo18 had a higher affinity for control liposomes than for a model protein. In anisotropy experiments, we mimicked ethanol action by temperature-dependent fluidization of the liposomes. Results suggest that the principal determinant of Lo18-membrane interaction is lipid bilayer phase behavior rather than phospholipid composition. We suggest a model to describe the ethanol adaptation of O. oeni. This model highlights the dual role of Lo18 in the protection of proteins from aggregation and membrane stabilization and suggests how modifications of phospholipid content may be a key factor determining the balance between these two functions.
PMCID: PMC4018897  PMID: 24584255
2.  Tyrosine-containing peptides are precursors of tyramine produced by Lactobacillus plantarum strain IR BL0076 isolated from wine 
BMC Microbiology  2012;12:199.
Biogenic amines are molecules with allergenic properties. They are found in fermented products and are synthesized by lactic acid bacteria through the decarboxylation of amino acids present in the food matrix. The concentration of biogenic amines in fermented foodstuffs is influenced by many environmental factors, and in particular, biogenic amine accumulation depends on the quantity of available precursors. Enological practices which lead to an enrichment in nitrogen compounds therefore favor biogenic amine production in wine. Free amino acids are the only known precursors for the synthesis of biogenic amines, and no direct link has previously been demonstrated between the use of peptides by lactic acid bacteria and biogenic amine synthesis.
Here we demonstrate for the first time that a Lactobacillus plantarum strain isolated from a red wine can produce the biogenic amine tyramine from peptides containing tyrosine. In our conditions, most of the tyramine was produced during the late exponential growth phase, coinciding with the expression of the tyrDC and tyrP genes. The DNA sequences of tyrDC and tyrP in this strain share 98% identity with those in Lactobacillus brevis consistent with horizontal gene transfer from L. brevis to L. plantarum.
Peptides amino acids are precursors of biogenic amines for Lactobacillus plantarum strain IR BL0076.
PMCID: PMC3492074  PMID: 22963406
Tyramine; Peptides; Lactobacillus plantarum; Wine
3.  Inactivation of PadR, the Repressor of the Phenolic Acid Stress Response, by Molecular Interaction with Usp1, a Universal Stress Protein from Lactobacillus plantarum, in Escherichia coli▿  
Applied and Environmental Microbiology  2009;75(16):5273-5283.
The phenolic acid decarboxylase gene padA is involved in the phenolic acid stress response (PASR) in gram-positive bacteria. In Lactobacillus plantarum, the padR gene encodes the negative transcriptional regulator of padA and is cotranscribed with a downstream gene, usp1, which encodes a putative universal stress protein (USP), Usp1, of unknown function. The usp1 gene is overexpressed during the PASR. However, the role and the mechanism of action of the USPs are unknown in gram-positive bacteria. Therefore, to gain insights into the role of USPs in the PASR; (i) a usp1 deletion mutant was constructed; (ii) the two genes padR and usp1 were coexpressed with padA under its own promoter as a reporter gene in Escherichia coli; and (iii) molecular in vitro interactions between the PadR, Usp1, and the padA promoter were studied. Although the usp1 mutant strain retained phenolic acid-dependent PAD activity, it displayed a greater sensitivity to strong acidic conditions compared to that of the wild-type strain. PadR cannot be inactivated directly by phenolic acid in E. coli recombinant cultures but is inactivated by Usp1 when the two proteins are coexpressed in E. coli. The PadR inactivation observed in recombinant E. coli cells was supported by electrophoretic mobility shift assays. Although Usp1 seems not to be absolutely required for the PASR, its capacity to inactivate PadR indicates that it could serve as an important mediator in acid stress response mechanisms through its capacity to interact with transcriptional regulators.
PMCID: PMC2725474  PMID: 19542339
4.  agr System of Listeria monocytogenes EGD-e: Role in Adherence and Differential Expression Pattern▿  
Applied and Environmental Microbiology  2007;73(19):6125-6133.
In this study, we investigated the agrBDCA operon in the pathogenic bacterium Listeria monocytogenes EGD-e. In-frame deletion of agrA and agrD resulted in an altered adherence and biofilm formation on abiotic surfaces, suggesting the involvement of the agr system of L. monocytogenes during the early stages of biofilm formation. Real-time PCR experiments indicated that the transcript levels of agrBDCA depended on the stage of biofilm development, since the levels were lower after the initial attachment period than during biofilm growth, whereas transcription during planktonic growth was not growth phase dependent. The mRNA quantification data also suggested that the agr system was autoregulated and pointed to a differential expression of the agr genes during sessile and planktonic growth. Although the reverse transcription-PCR experiments revealed that the four genes were transcribed as a single messenger, chemical half-life and 5′ RACE (rapid amplification of cDNA ends) experiments indicated that the full size transcript underwent cleavage followed by degradation of the agrC and agrA transcripts, which suggests a complex regulation of agr transcription.
PMCID: PMC2075002  PMID: 17675424

Results 1-4 (4)