PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Interplay between Manganese and Iron in Pneumococcal Pathogenesis: Role of the Orphan Response Regulator RitR 
Infection and Immunity  2013;81(2):421-429.
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the human population. Translocation of the bacteria into internal sites can cause a range of diseases, such as pneumonia, otitis media, meningitis, and bacteremia. This transition from nasopharynx to growth at systemic sites means that the pneumococcus needs to adjust to a variety of environmental conditions, including transition metal ion availability. Although it is an important nutrient, iron potentiates oxidative stress, and it is established that in S. pneumoniae, expression of iron transport systems and proteins that protect against oxidative stress are regulated by an orphan response regulator, RitR. In this study, we investigated the effect of iron and manganese ion availability on the growth of a ritR mutant. Deletion of ritR led to impaired growth of bacteria in high-iron medium, but this phenotype could be suppressed with the addition of manganese. Measurement of metal ion accumulation indicated that manganese prevents iron accumulation. Furthermore, the addition of manganese also led to a reduction in the amount of hydrogen peroxide produced by bacterial cells. Studies of virulence in a murine model of infection indicated that RitR was not essential for pneumococcal survival and suggested that derepression of iron uptake systems may enhance the survival of pneumococci in some niches.
doi:10.1128/IAI.00805-12
PMCID: PMC3553810  PMID: 23184523
2.  Site of Isolation Determines Biofilm Formation and Virulence Phenotypes of Streptococcus pneumoniae Serotype 3 Clinical Isolates 
Infection and Immunity  2013;81(2):505-513.
Streptococcus pneumoniae is a diverse species causing invasive as well as localized infections that result in massive global morbidity and mortality. Strains vary markedly in pathogenic potential, but the molecular basis is obscured by the diversity and plasticity of the pneumococcal genome. In the present study, S. pneumoniae serotype 3 blood (n = 12) or ear (n = 13) isolates were multilocus sequence typed (MLST) and assessed for biofilm formation and virulence phenotype. Blood and ear isolates exhibited similar MLST distributions but differed markedly in phenotype. Blood isolates formed robust biofilms only at pH 7.4, which were enhanced in Fe(III)-supplemented medium. Conversely, ear isolates formed biofilms only at pH 6.8, and Fe(III) was inhibitory. Biofilm formation paralleled luxS expression and genetic competence. In a mouse intranasal challenge model, blood isolates did not stably colonize the nasopharynx but spread to the blood; none spread to the ear. Ear isolates colonized the nasopharynx at higher levels and also spread to the ear compartment in a significant proportion of animals; none caused bacteremia. Thus, pneumococci of the same serotype and MLST exhibit distinct phenotypes in accordance with clinical site of isolation, indicative of stable niche adaptation within a clonal lineage.
doi:10.1128/IAI.01033-12
PMCID: PMC3553814  PMID: 23208608
3.  Streptococcus pneumoniae Uses Glutathione To Defend against Oxidative Stress and Metal Ion Toxicity 
Journal of Bacteriology  2012;194(22):6248-6254.
The thiol-containing tripeptide glutathione is an important cellular constituent of many eukaryotic and prokaryotic cells. In addition to its disulfide reductase activity, glutathione is known to protect cells from many forms of physiological stress. This report represents the first investigation into the role of glutathione in the Gram-positive pathogen Streptococcus pneumoniae. We demonstrate that pneumococci import extracellular glutathione using the ABC transporter substrate binding protein GshT. Mutation of gshT and the gene encoding glutathione reductase (gor) increases pneumococcal sensitivity to the superoxide generating compound paraquat, illustrating the importance of glutathione utilization in pneumococcal oxidative stress resistance. In addition, the gshT and gor mutant strains are hypersensitive to challenge with the divalent metal ions copper, cadmium, and zinc. The importance of glutathione utilization in pneumococcal colonization and invasion of the host is demonstrated by the attenuated phenotype of the gshT mutant strain in a mouse model of infection.
doi:10.1128/JB.01393-12
PMCID: PMC3486410  PMID: 22984260
4.  Identification of Genes That Contribute to the Pathogenesis of Invasive Pneumococcal Disease by In Vivo Transcriptomic Analysis 
Infection and Immunity  2012;80(9):3268-3278.
Streptococcus pneumoniae (the pneumococcus) continues to be responsible for a high level of global morbidity and mortality resulting from pneumonia, bacteremia, meningitis, and otitis media. Here we have used a novel technique involving niche-specific, genome-wide in vivo transcriptomic analyses to identify genes upregulated in distinct niches during pathogenesis after intranasal infection of mice with serotype 4 or 6A pneumococci. The analyses yielded 28 common, significantly upregulated genes in the lungs relative to those in the nasopharynx and 25 significantly upregulated genes in the blood relative to those in the lungs in both strains, some of which were previously unrecognized. The role of five upregulated genes from either the lungs or the blood in pneumococcal pathogenesis and virulence was then evaluated by targeted mutagenesis. One of the mutants (ΔmalX) was significantly attenuated for virulence in the lungs, two (ΔaliA and ΔilvH) were significantly attenuated for virulence in the blood relative to the wild type, and two others (ΔcbiO and ΔpiuA) were completely avirulent in a mouse intranasal challenge model. We also show that the products of aliA, malX, and piuA are promising candidates for incorporation into multicomponent protein-based pneumococcal vaccines currently under development. Importantly, we suggest that this new approach is a viable complement to existing strategies for the discovery of genes critical to the distinct stages of invasive pneumococcal disease and potentially has broad application for novel protein antigen discovery in other pathogens such as S. pyogenes, Haemophilus influenzae type b, and Neisseria meningitidis.
doi:10.1128/IAI.00295-12
PMCID: PMC3418729  PMID: 22778095
5.  Regulation of neuraminidase expression in Streptococcus pneumoniae 
BMC Microbiology  2012;12:200.
Background
Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung.
Results
In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells.
Conclusions
The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media.
doi:10.1186/1471-2180-12-200
PMCID: PMC3509027  PMID: 22963456
Sialic acid; Metabolic regulation; Carbon catabolite repression
6.  LuxS Mediates Iron-Dependent Biofilm Formation, Competence, and Fratricide in Streptococcus pneumoniae ▿  
Infection and Immunity  2011;79(11):4550-4558.
During infection, Streptococcus pneumoniae exists mainly in sessile biofilms rather than in planktonic form, except during sepsis. The capacity to form biofilms is believed to be important for nasopharyngeal colonization as well as disease pathogenesis, but relatively little is known about the regulation of this process. Here, we investigated the effect of exogenous iron [Fe(III)] as well as the role of luxS (encoding S-ribosylhomocysteine lyase) on biofilm formation by S. pneumoniae D39. Fe(III) strongly enhanced biofilm formation at concentrations of ≥50 μM, while Fe(III) chelation with deferoxamine was inhibitory. Importantly, Fe(III) also upregulated the expression of luxS in wild-type D39. A luxS-deficient mutant (D39luxS) failed to form a biofilm, even with Fe(III) supplementation, whereas a derivative overexpressing luxS (D39luxS+) exhibited enhanced biofilm formation capacity and could form a biofilm without added Fe(III). D39luxS exhibited reduced expression of the major Fe(III) transporter PiuA, and the cellular [Fe(III)] was significantly lower than that in D39; in contrast, D39luxS+ had a significantly higher cellular [Fe(III)] than the wild type. The release of extracellular DNA, which is an important component of the biofilm matrix, also was directly related to luxS expression. Similarly, genetic competence, as measured by transformation frequency as well as the expression of competence genes comD, comX, comW, cglA, and dltA and the murein hydrolase cbpD, which is associated with fratricide-dependent DNA release, all were directly related to luxS expression levels and were further upregulated by Fe(III). Moreover, mutagenesis of cbpD blocked biofilm formation. We propose that competence, fratricide, and biofilm formation are closely linked in pneumococci, and that luxS is a central regulator of these processes. We also propose that the stimulatory effects of Fe(III) on all of these parameters are due to the upregulation of luxS expression, and that LuxS provides for a positive Fe(III)-dependent amplification loop by increasing iron uptake.
doi:10.1128/IAI.05644-11
PMCID: PMC3257940  PMID: 21875962
7.  Extracellular Matrix Formation Enhances the Ability of Streptococcus pneumoniae to Cause Invasive Disease 
PLoS ONE  2011;6(5):e19844.
During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.
doi:10.1371/journal.pone.0019844
PMCID: PMC3097209  PMID: 21611130
8.  The impact of the competence quorum sensing system on Streptococcus pneumoniae biofilms varies depending on the experimental model 
BMC Microbiology  2011;11:75.
Background
Different models for biofilm in Streptococcus pneumoniae have been described in literature. To permit comparison of experimental data, we characterised the impact of the pneumococcal quorum-sensing competence system on biofilm formation in three models. For this scope, we used two microtiter and one continuous culture biofilm system.
Results
In both microtiter models the competence system influences stability and structure of biofilm in the late attachment phase and synthetic competence stimulating peptide (CSP) restored wild type phenotypes in the comC mutants unable to produce the peptide. Early attachment of single cells to well bottoms was found for both systems to be competence independent, while later phases, including microcolony formation correlated to an intact competence system. The continuous culture biofilm model was not affected by mutations in the competence locus, but deletion of capsule had a significant impact in this model.
Conclusions
Since biofilm remains a largely uncharacterised multi-parameter phenotype it appears to be advisable to exploit more than one model in order to draw conclusion of possible relevance of specific genotypes on pneumococcal physiology.
doi:10.1186/1471-2180-11-75
PMCID: PMC3098770  PMID: 21492426
9.  Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis 
Molecular Microbiology  2006;61(5):1196-1210.
Two main patterns of gene expression of Streptococcus pneumoniae were observed during infection in the host by quantitative real time RT-PCR; one was characteristic of bacteria in blood and one of bacteria in tissue, such as brain and lung. Gene expression in blood was characterized by increased expression of pneumolysin, pspA and hrcA, while pneumococci in tissue infection showed increased expression of neuraminidases, metalloproteinases, oxidative stress and competence genes. In vitro situations with similar expression patterns were detected in liquid culture and in a newly developed pneumococcal model of biofilm respectively. The biofilm model was dependent on addition of synthetic competence stimulating peptide (CSP) and no biofilm was formed by CSP receptor mutants. As one of the differentially expressed gene sets in vivo were the competence genes, we exploited competence-specific tools to intervene on pneumococcal virulence during infection. Induction of the competence system by the quorum-sensing peptide, CSP, not only induced biofilm formation in vitro, but also increased virulence in pneumonia in vivo. In contrast, a mutant for the ComD receptor, which did not form biofilm, also showed reduced virulence in pneumonia. These results were opposite to those found in a bacteraemic sepsis model of infection, where the competence system was downregulated. When pneumococci in the different physiological states were used directly for challenge, sessile cells grown in a biofilm were more effective in inducing meningitis and pneumonia, while planktonic cells from liquid culture were more effective in inducing sepsis. Our data enable us, using in vivo gene expression and in vivo modulation of virulence, to postulate the distinction – from the pneumococcal point of view – between two main types of disease. During bacteraemic sepsis pneumococci resemble planktonic growth, while during tissue infection, such as pneumonia or meningitis, pneumococci are in a biofilm-like state.
doi:10.1111/j.1365-2958.2006.05310.x
PMCID: PMC1618759  PMID: 16925554
10.  Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae 
Antimicrobial Agents and Chemotherapy  2004;48(12):4725-4732.
Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target.
doi:10.1128/AAC.48.12.4725-4732.2004
PMCID: PMC529211  PMID: 15561850

Results 1-10 (10)