PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway 
mBio  2015;6(3):e00354-15.
ABSTRACT
Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses.
IMPORTANCE
Deciphering the individual contribution of each Dot/Icm type 4 secretion system substrate to the intracellular life-style of L. pneumophila remains the principal challenge in understanding the molecular basis of Legionella virulence. Our finding that LegK2 is a Dot/Icm effector that inhibits actin polymerization on the Legionella-containing vacuole importantly contributes to the deciphering of the molecular mechanisms evolved by Legionella to counteract the endocytic pathway. Indeed, our results highlight the essential role of LegK2 in preventing late endosomes from fusing with the phagosome. More generally, this work is the first demonstration of local actin remodeling as a mechanism used by bacteria to control organelle trafficking. Further, by characterizing the role of the bacterial protein kinase LegK2, we reinforce the concept that posttranslational modifications are key strategies used by pathogens to evade host cell defenses.
doi:10.1128/mBio.00354-15
PMCID: PMC4436068  PMID: 25944859
2.  Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideum and macrophages in relation with type III secretion system 
BMC Microbiology  2012;12:223.
Background
Pseudomonas fluorescens biovar I MFN1032 is a clinical isolate able to grow at 37°C. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides, and a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis is independent of biosurfactant production and remains in a gacA mutant. Disruption of the hrpU-like operon (the basal part of type III secretion system from rhizospheric strains) suppresses this activity. We hypothesized that this phenotype could reflect evolution of an ancestral mechanism involved in the survival of this species in its natural niche. In this study, we evaluated the hrpU-like operon’s contribution to other virulence mechanisms using a panel of Pseudomonas strains from various sources.
Results
We found that MFN1032 inhibited the growth of the amoebae Dictyostelium discoideum and that this inhibition involved the hrpU-like operon and was absent in a gacA mutant. MFN1032 was capable of causing macrophage lysis, if the hrpU-like operon was intact, and this cytotoxicity remained in a gacA mutant. Cell-associated hemolytic activity and macrophage necrosis were found in other P. fluorescens clinical isolates, but not in biocontrol P. fluorescens strains harbouring hrpU-like operon. The growth of Dictyostelium discoideum was inhibited to a different extent by P. fluorescens strains without correlation between this inhibition and hrpU-like operon sequences.
Conclusions
In P. fluorescens MFN1032, the basal part of type III secretion system plays a role in D. discoideum growth inhibition and macrophage necrosis. The inhibition of D. discoideum growth is dependent on the GacS/GacA system, while cell-associated hemolytic activity and macrophage lysis are not. Virulence against eukaryotic cells based on the hrpU-like operon may be more than just a stochastic evolution of a conserved system dedicated to survival in competition with natural predators such as amoebae. It may also mean that there are some important modifications of other type III secretion system components, which remain unknown. Cell-associated hemolysis might be a good indicator of the virulence of Pseudomonas fluorescens strain.
doi:10.1186/1471-2180-12-223
PMCID: PMC3489880  PMID: 23020706
Pseudomonas fluorescens clinical strains; Type III secretion system; Dictyostelium discoideum; Macrophage necrosis; Cell-associated hemolytic activity
3.  Cell-associated hemolysis activity in the clinical strain of Pseudomonas fluorescens MFN1032 
BMC Microbiology  2010;10:124.
Background
MFN1032 is a clinical Pseudomonas fluorescens strain able to grow at 37°C. MFN1032 cells induce necrosis and apoptosis in rat glial cells at this temperature. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides. Under laboratory conditions, this activity is not expressed at 37°C. This activity is tightly regulated and is subject to phase variation.
Results
We found that MFN1032 displays a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis was expressed at 37°C and was only detected in vitro in mid log growth phase in the presence of erythrocytes. We studied the regulation of this activity in the wild-type strain and in a mutant defective in the Gac two-component pathway. GacS/GacA is a negative regulator of this activity. In contrast to the Pseudomonas fluorescens strains PfO-1 and Pf5, whose genomes have been sequenced, the MFN1032 strain has the type III secretion-like genes hrcRST belonging to the hrpU operon. We showed that disruption of this operon abolished cell-associated hemolytic activity. This activity was not detected in P.fluorescens strains carrying similar hrc genes, as for the P. fluorescens psychrotrophic strain MF37.
Conclusions
To our knowledge this the first demonstration of cell-associated hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this activity seems to be related to a functional hrpU operon and is independent of biosurfactant production. Precise link between a functional hrpU operon and cell-associated hemolytic activity remains to be elucidated.
doi:10.1186/1471-2180-10-124
PMCID: PMC2871272  PMID: 20416103

Results 1-3 (3)