Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines 
Genome Biology and Evolution  2015;7(6):1506-1518.
Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne.
PMCID: PMC4494047  PMID: 25977455
Oenococcus oeni; genomics; phylogeny; population structure; domestication
2.  Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine 
Genome Announcements  2015;3(2):e00097-15.
Here, we describe the draft genome sequence and annotation of Lactobacillus plantarum strain Lp90, the first sequenced genome of a L. plantarum strain isolated from wine. This strain has a noticeable ropy phenotype and showed potential probiotic properties. The genome consists of 3,324,076 bp (33 contigs) and contains 3,155 protein coding genes, 34 pseudogenes, and 84 RNA genes.
PMCID: PMC4357756  PMID: 25767234
3.  Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain 
Genome Announcements  2014;2(6):e01080-14.
Bacillus coagulans GBI-30, 6086 is a safe strain, already available on the market, and characterized by certified beneficial effects. The draft genome sequence presented here constitutes the first pillar toward the identification of the molecular mechanisms responsible for its positive features and safety.
PMCID: PMC4223449  PMID: 25377698
4.  Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy 
Genome Announcements  2014;2(5):e01077-14.
Oenococcus oeni is the principal lactic acid bacterium responsible for malolactic fermentation in wine. Here, we announce the genome sequences of five O. oeni strains isolated from Nero di Troia wine undergoing spontaneous malolactic fermentation, and we report, for the first time, several genome sequences of strains isolated from the same terroir.
PMCID: PMC4208331  PMID: 25342687
5.  Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine 
Genome Announcements  2014;2(4):e00658-14.
Oenococcus oeni OM27 is a strain selected from “Nero di Troia” wine undergoing spontaneous malolactic fermentation. “Nero di Troia” is a wine made from “Uva di Troia” grapes, an autochthonous black grape variety from the Apulian region (south of Italy). In this paper we present a 1.78-Mb assembly of the O. oeni OM27 genome, the first fully assembled genome of an O. oeni strain from an Italian wine.
PMCID: PMC4082001  PMID: 24994801
6.  Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria 
BioMed Research International  2014;2014:309183.
Due to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored. Finally, probiotic Lactobacillus were further investigated for their antagonistic effect against Listeria monocytogenes and Escherichia coli O157:H7 on pineapple plugs. Our results show that at eight days of storage, the concentration of L. plantarum and L. fermentum on pineapples pieces ranged between 7.3 and 6.3 log cfu g−1, respectively, without affecting the final quality of the fresh-cut pineapple. The antagonistic assays indicated that L. plantarum was able to inhibit the growth of both pathogens, while L. fermentum was effective only against L. monocytogenes. This study suggests that both L. plantarum and L. fermentum could be successfully applied during processing of fresh-cut pineapples, contributing at the same time to inducing a protective effect against relevant foodborne pathogens.
PMCID: PMC4100397  PMID: 25093163
7.  A Fast, Reliable, and Sensitive Method for Detection and Quantification of Listeria monocytogenes and Escherichia coli O157:H7 in Ready-to-Eat Fresh-Cut Products by MPN-qPCR 
BioMed Research International  2014;2014:608296.
In the present work we developed a MPN quantitative real-time PCR (MPN-qPCR) method for a fast and reliable detection and quantification of Listeria monocytogenes and Escherichia coli O157:H7 in minimally processed vegetables. In order to validate the proposed technique, the results were compared with conventional MPN followed by phenotypic and biochemical assays methods. When L. monocytogenes and E. coli O157:H7 were artificially inoculated in fresh-cut vegetables, a concentration as low as 1 CFU g−1 could be detected in 48 hours for both pathogens. qPCR alone allowed a limit of detection of 101 CFU g−1 after 2 hours of enrichment for L. monocytogenes and E. coli O157:H7. Since minimally processed ready-to-eat vegetables are characterized by very short shelf life, our method can potentially address the consistent reduction of time for microbial analysis, allowing a better management of quality control. Moreover, the occurrences of both pathogenic bacteria in mixed salad samples and fresh-cut melons were monitored in two production plants from the receipt of the raw materials to the early stages of shelf life. No sample was found to be contaminated by L. monocytogenes. One sample of raw mixed salad was found positive to an H7 enterohemorrhagic serotype.
PMCID: PMC4052075  PMID: 24949460
8.  A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163 
Open Biology  2014;4(2):130154.
Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.
PMCID: PMC3938052  PMID: 24573368
Oenococcus oeni; proteome; two-dimensional electrophoresis
9.  Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria 
Currently, the majority of prebiotics in the market are derived from non-digestible oligosaccharides. Very few studies have focused on non-digestible long chain complex polysaccharides in relation to their potential as novel prebiotics. Cereals β-glucans have been investigated for immune-modulating properties and beneficial effects on obesity, cardiovascular diseases, diabetes, and cholesterol levels. Moreover, β-glucans have been reported to be highly fermentable by the intestinal microbiota in the caecum and colon, and can enhance both growth rate and lactic acid production of microbes isolated from the human intestine. In this work, we report the effects of food matrices containing barley β-glucans on growth and probiotic features of four Lactobacillus strains. Such matrices were able to improve the growth rate of the tested bacteria both in unstressed conditions and, importantly, after exposure to in vitro simulation of the digestive tract. Moreover, the effect of β-glucans-containing food on bacterial adhesion to enterocyte-like cells was analyzed and a positive influence on probiotic-enterocyte interaction was observed.
PMCID: PMC3958897  PMID: 24562330
barley β-glucans; probiotics; prebiotics; pasta; Lactobacillus
10.  Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress 
BMC Microbiology  2012;12:247.
Ingestion of fermented foods containing high levels of biogenic amines (BA) can be deleterious to human health. Less obvious is the threat posed by BA producing organisms contained within the food which, in principle, could form BA after ingestion even if the food product itself does not initially contain high BA levels. In this work we have investigated the production of tyramine and putrescine by Lactobacillus brevis IOEB 9809, of wine origin, under simulated gastrointestinal tract (GIT) conditions.
An in vitro model that simulates the normal physiological conditions in the human digestive tract, as well as Caco-2 epithelial human cell lines, was used to challenge L. brevis IOEB 9809, which produced both tyramine and putrescine under all conditions tested. In the presence of BA precursors and under mild gastric stress, a correlation between enhancement of bacterial survival and a synchronous transcriptional activation of the tyramine and putrescine biosynthetic pathways was detected. High levels of both BA were observed after exposure of the bacterium to Caco-2 cells.
L. brevis IOEB 9809 can produce tyramine and putrescine under simulated human digestive tract conditions. The results indicate that BA production may be a mechanism that increases bacterial survival under gastric stress.
PMCID: PMC3499163  PMID: 23113922
Biogenic amines; Lactic acid bacteria; Putrescine; Tyramine; Food safety; Food toxicity
11.  Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine 
Biogenic amines (BA) in wine represent a toxicological risk for the health of the consumer, with several trade implications. In this study 26 strains of Lactobacillus plantarum were analyzed for their ability to degrade BA commonly found during wine fermentation. Two strains of L. plantarum were selected in reason of their ability to degrade putrescine and tyramine. The degradation was assessed in vitro, both in presence of the BA and in presence of the specific chemical precursor and of producer bacteria. The two L. plantarum biotypes were found capable to work synergically. In addition, the survival in wine-like medium and the aptitude to degrade malic acid after alcoholic fermentation of the selected L. plantarum strains was analyzed. Our results suggest the potential application of wine L. plantarum strains to design malolactic starter cultures able to degrade BA in wine.
PMCID: PMC3316997  PMID: 22485114
lactic acid bacteria; amine degradation; biogenic amines; malolactic fermentation; wine; Lactobacillus plantarum; putrescine; tyramine
12.  Biotechnology and Pasta-Making: Lactic Acid Bacteria as a New Driver of Innovation 
Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.
PMCID: PMC3304088  PMID: 22457660
lactic acid bacteria; pasta; sourdough; quality; microbial cell factories
13.  Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms 
Probiotics, prebiotics and synbiotics are frequently-used components for the elaboration of functional food. Currently, most of the commercialized probiotics are limited to a few strains of the genera Bifidobacteria, Lactobacillus and Streptococcus, most of which produce exopolysaccharides (EPS). This suggests that the beneficial properties of these microorganisms may be related to the biological activities of these biopolymers. In this work we report that a 2-substituted-(1,3)-β-d-glucan of non-dairy bacterial origin has a prebiotic effect on three probiotic strains. Moreover, the presence of this β-d-glucan potentiates in vitro adhesion of the probiotic Lactobacillus plantarum WCFS1 to human intestinal epithelial cells.
PMCID: PMC3382753  PMID: 22754347
β-glucans; probiotics; prebiotics; Lactobacillus plantarum
14.  Comparative Proteomic Analysis of Lactobacillus plantarum WCFS1 and ΔctsR Mutant Strains Under Physiological and Heat Stress Conditions 
Among Gram-positive bacteria, CtsR (Class Three Stress gene Repressor) mainly regulates the expression of genes encoding the Clp ATPases and the ClpP protease. To gain a better understanding of the biological significance of the CtsR regulon in response to heat-shock conditions, we performed a global proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under optimal or heat stress temperatures. Total protein extracts from bacterial cells were analyzed by two-dimensional gel fractionation. By comparing maps from different culture conditions and different L. plantarum strains, image analysis revealed 23 spots with altered levels of expression. The proteomic analysis of L. plantarum WCFS1 and ctsR mutant strains confirms at the translational level the CtsR-mediated regulation of some members of the Clp family, as well as the heat induction of typical stress response genes. Heat activation of the putative CtsR regulon genes at transcriptional and translational levels, in the ΔctsR mutant, suggests additional regulative mechanisms, as is the case of hsp1. Furthermore, isoforms of ClpE with different molecular mass were found, which might contribute to CtsR quality control. Our results could add new outlooks in order to determine the complex biological role of CtsR-mediated stress response in lactic acid bacteria.
PMCID: PMC3472708  PMID: 23109816
ClpE; CtsR; heat; Lactobacillus plantarum; stress
15.  Food Microbial Biodiversity and “Microbes of Protected Origin”  
PMCID: PMC3226094  PMID: 22144978
16.  The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR) Analysis 
Small heat shock proteins (sHsps) are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR) procedure was developed and used to quantify the transcript level of a small heat shock gene (shs) in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C), bile (0.3% w/v), hyperosmosis (1 M and 2.5 M NaCl), and low pH value (pH 4). The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5′ noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR) sequence (TTAGCACTC-N9-GAGTGCTAA) homologue to the controlling IR of chaperone expression (CIRCE) elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.
PMCID: PMC3179173  PMID: 21954366
RT-qPCR; Lactobacillus acidophilus; probiotic; small heat shock gene; stress
17.  Characterization of the CtsR Stress Response Regulon in Lactobacillus plantarum ▿ †  
Journal of Bacteriology  2009;192(3):896-900.
Lactobacillus plantarum ctsR was characterized. ctsR was found to be cotranscribed with clpC and induced in response to various abiotic stresses. ctsR deletion conferred a heat-sensitive phenotype with peculiar cell morphological features. The transcriptional pattern of putative CtsR regulon genes was examined in the ΔctsR mutant. Direct CtsR-dependent regulation was demonstrated by DNA-binding assays using recombinant CtsR and the promoters of the ctsR-clpC operon and hsp1.
PMCID: PMC2812460  PMID: 19933364
18.  The Lactobacillus plantarum ftsH Gene Is a Novel Member of the CtsR Stress Response Regulon ▿  
Journal of Bacteriology  2008;191(5):1688-1694.
FtsH proteins have dual chaperone-protease activities and are involved in protein quality control under stress conditions. Although the functional role of FtsH proteins has been clearly established, the regulatory mechanisms controlling ftsH expression in gram-positive bacteria remain largely unknown. Here we show that ftsH of Lactobacillus plantarum WCFS1 is transiently induced at the transcriptional level upon a temperature upshift. In addition, disruption of ftsH negatively affected the growth of L. plantarum at high temperatures. Sequence analysis and mapping of the ftsH transcriptional start site revealed a potential operator sequence for the CtsR repressor, partially overlapping the −35 sequence of the ftsH promoter. In order to verify whether CtsR is able to recognize and bind the ftsH promoter, CtsR proteins of Bacillus subtilis and L. plantarum were overproduced, purified, and used in DNA binding assays. CtsR from both species bound specifically to the ftsH promoter, generating a single protein-DNA complex, suggesting that CtsR may control the expression of L. plantarum ftsH. In order to confirm this hypothesis, a ΔctsR mutant strain of L. plantarum was generated. Expression of ftsH in the ΔctsR mutant strain was strongly upregulated, indicating that ftsH of L. plantarum is negatively controlled by CtsR. This is the first example of an ftsH gene controlled by the CtsR repressor, and the first of the low-G+C gram-positive bacteria where the regulatory mechanism has been identified.
PMCID: PMC2648225  PMID: 19074391
19.  Bacterial Stressors in Minimally Processed Food 
Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes.
PMCID: PMC2738913  PMID: 19742126
stress; stressors; fresh cut; pathogens

Results 1-19 (19)