Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes 
Contamination of tomatoes by Salmonella can occur in agricultural settings. Little is currently understood about how agricultural inputs such as pesticide applications may impact epiphytic crop microflora and potentially play a role in contamination events. We examined the impact of two materials commonly used in Virginia tomato agriculture: acibenzolar-S-methyl (crop protectant) and copper oxychloride (pesticide) to identify the effects these materials may exert on baseline tomato microflora and on the incidence of three specific genera; Salmonella, Xanthomonas and Paenibacillus.
Approximately 186 441 16S rRNA gene and 39 381 18S rRNA gene sequences per independent replicate were used to analyze the impact of the pesticide applications on tomato microflora. An average of 3 346 677 (634 892 974 bases) shotgun sequences per replicate were used for metagenomic analyses.
A significant decrease in the presence of Gammaproteobacteria was observed between controls and copper-treated plants, suggesting that copper is effective at suppressing growth of certain taxa in this class. A higher mean abundance of Salmonella and Paenibacillus in control samples compared to treatments may suggest that both systemic and copper applications diminish the presence of these genera in the phyllosphere; however, owing to the lack of statistical significance, this could also be due to other factors. The most distinctive separation of shared membership was observed in shotgun data between the two different sampling time-points (not between treatments), potentially supporting the hypothesis that environmental pressures may exert more selective pressures on epiphytic microflora than do certain agricultural management practices. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
PMCID: PMC4368374  PMID: 25410588
tomatoes; phyllosphere; 16S 18S; metagenomic; phytobiome
2.  Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing 
BMC Microbiology  2015;15:160.
Salmonella enterica is a common cause of foodborne gastroenteritis in the United States and is associated with outbreaks in fresh produce such as cilantro. Salmonella culture-based detection methods are complex and time consuming, and improvments to increase detection sensitivity will benefit consumers. In this study, we used 16S rRNA sequencing to determine the microbiome of cilantro. We also investigated changes to the microbial community prior to and after a 24-hour nonselective pre-enrichment culture step commonly used by laboratory analysts to resuscitate microorganisms in foods suspected of contamination with pathogens. Cilantro samples were processed for Salmonella detection according to the method in the United States Food and Drug Administration Bacteriological Analytical Manual. Genomic DNA was extracted from culture supernatants prior to and after a 24-hour nonselective pre-enrichment step and 454 pyrosequencing was performed on 16S rRNA amplicon libraries. A database of Enterobacteriaceae 16S rRNA sequences was created, and used to screen the libraries for Salmonella, as some samples were known to be culture positive. Additionally, culture positive cilantro samples were examined for the presence of Salmonella using shotgun metagenomics on the Illumina MiSeq.
Time zero uncultured samples had an abundance of Proteobacteria while the 24-hour enriched samples were composed mostly of Gram-positive Firmicutes. Shotgun metagenomic sequencing of Salmonella culture positive cilantro samples revealed variable degrees of Salmonella contamination among the sequenced samples.
Our cilantro study demonstrates the use of high-throughput sequencing to reveal the microbiome of cilantro, and how the microbiome changes during the culture-based protocols employed by food safety laboratories to detect foodborne pathogens. Finding that culturing the cilantro shifts the microbiome to a predominance of Firmicutes suggests that changing our culture-based methods will improve detection sensitivity for foodborne enteric pathogens.
Electronic supplementary material
The online version of this article (doi:10.1186/s12866-015-0497-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4534111  PMID: 26264042
3.  Co-Enriching Microflora Associated with Culture Based Methods to Detect Salmonella from Tomato Phyllosphere 
PLoS ONE  2013;8(9):e73079.
The ability to detect a specific organism from a complex environment is vitally important to many fields of public health, including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manual's (BAM) protocol for detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the sequence based identification of a number of sequences as Salmonella despite indication by all media, that samples were culture negative for Salmonella. Our results substantiate the nascent utility of metagenomic methods to improve both biological and bioinformatic pathogen detection methods.
PMCID: PMC3767688  PMID: 24039862
4.  Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato) 
BMC Microbiology  2013;13:114.
Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop.
DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes.
Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.
PMCID: PMC3680157  PMID: 23705801
Tomato microflora; 16S; 18S; Metagenomics; Phyllosphere; Solanum lycopersicum; Tomato organs; Microbial ecology; Baseline microflora; Tomatome
5.  Characterization of microflora in Latin-style cheeses by next-generation sequencing technology 
BMC Microbiology  2012;12:254.
Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment.
Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods.
The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese.
PMCID: PMC3503605  PMID: 23134566
Latin-style cheese; Next Generation Sequencing; Microflora; Bacteria; Exiguobacterium
6.  Bacterial community diversity and variation in spray water sources and the tomato fruit surface 
BMC Microbiology  2011;11:81.
Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production.
The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant.
Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.
PMCID: PMC3108269  PMID: 21510867

Results 1-6 (6)