Search tips
Search criteria

Results 1-25 (38)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death 
Science (New York, N.Y.)  2013;342(6160):863-866.
Bacterial invasion of host tissues triggers polymorphonuclear leukocytes to release DNA (NETs, neutrophil extracellular traps), thereby immobilizing microbes for subsequent clearance by innate defenses including macrophage phagocytosis. We report here that Staphylococcus aureus escapes these defenses by converting NETs to deoxyadenosine, which triggers the caspase-3 mediated death of immune cells. Conversion of NETs to deoxyadenosine requires two enzymes, nuclease and adenosine synthase, that are secreted by S. aureus and necessary for the exclusion of macrophages from staphylococcal abscesses. Thus, the pathogenesis of S. aureus infections has evolved to anticipate host defenses and to repurpose them for the destruction of the immune system.
PMCID: PMC4026193  PMID: 24233725
2.  Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium 
Journal of Bacteriology  2013;195(20):4650-4659.
The LytR-CpsA-Psr (LCP) proteins are thought to transfer bactoprenol-linked biosynthetic intermediates of wall teichoic acid (WTA) to the peptidoglycan of Gram-positive bacteria. In Bacillus subtilis, mutants lacking all three LCP enzymes do not deposit WTA in the envelope, while Staphylococcus aureus Δlcp mutants display impaired growth and reduced levels of envelope phosphate. We show here that the S. aureus Δlcp mutant synthesized WTA yet released ribitol phosphate polymers into the extracellular medium. Further, Δlcp mutant staphylococci no longer restricted the deposition of LysM-type murein hydrolases to cell division sites, which was associated with defects in cell shape and increased autolysis. Mutations in S. aureus WTA synthesis genes (tagB, tarF, or tarJ2) inhibit growth, which is attributed to the depletion of bactoprenol, an essential component of peptidoglycan synthesis (lipid II). The growth defect of S. aureus tagB and tarFJ mutants was alleviated by inhibition of WTA synthesis with tunicamycin, whereas the growth defect of the Δlcp mutant was not relieved by tunicamycin treatment or by mutation of tagO, whose product catalyzes the first committed step of WTA synthesis. Further, sortase A-mediated anchoring of proteins to peptidoglycan, which also involves bactoprenol and lipid II, was not impaired in the Δlcp mutant. We propose a model whereby the S. aureus Δlcp mutant, defective in tethering WTA to the cell wall, cleaves WTA synthesis intermediates, releasing ribitol phosphate into the medium and recycling bactoprenol for peptidoglycan synthesis.
PMCID: PMC3807444  PMID: 23935043
3.  Bacillus anthracis Acetyltransferases PatA1 and PatA2 Modify the Secondary Cell Wall Polysaccharide and Affect the Assembly of S-Layer Proteins 
Journal of Bacteriology  2013;195(5):977-989.
The envelope of Bacillus anthracis encompasses a proteinaceous S-layer with two S-layer proteins (Sap and EA1). Protein assembly in the envelope of B. anthracis requires S-layer homology domains (SLH) within S-layer proteins and S-layer-associated proteins (BSLs), which associate with the secondary cell wall polysaccharide (SCWP), an acetylated carbohydrate that is tethered to peptidoglycan. Here, we investigated the contributions of two putative acetyltransferases, PatA1 and PatA2, on SCWP acetylation and S-layer assembly. We show that mutations in patA1 and patA2 affect the chain lengths of B. anthracis vegetative forms and perturb the deposition of the BslO murein hydrolase at cell division septa. The patA1 and patA2 mutants are defective for the assembly of EA1 in the envelope but retain the ability of S-layer formation with Sap. SCWP isolated from the patA1 patA2 mutant lacked acetyl moieties identified in wild-type polysaccharide and failed to associate with the SLH domains of EA1. A model is discussed whereby patA1- and patA2-mediated acetylation of SCWP enables the deposition of EA1 as well as BslO near the septal region of the B. anthracis envelope.
PMCID: PMC3571321  PMID: 23243307
4.  Vaccine Protection against Bacillus cereus-Mediated Respiratory Anthrax-Like Disease in Mice 
Infection and Immunity  2013;81(3):1008-1017.
Bacillus cereus strains harboring a pXO1-like virulence plasmid cause respiratory anthrax-like disease in humans, particularly in welders. We developed mouse models for intraperitoneal as well as aerosol challenge with spores of B. cereus G9241, harboring pBCXO1 and pBC218 virulence plasmids. Compared to wild-type B. cereus G9241, spores with a deletion of the pBCXO1-carried protective antigen gene (pagA1) were severely attenuated, whereas spores with a deletion of the pBC218-carried protective antigen homologue (pagA2) were not. Anthrax vaccine adsorbed (AVA) immunization raised antibodies that bound and neutralized the pagA1-encoded protective antigen (PA1) but not the PA2 orthologue encoded by pagA2. AVA immunization protected mice against a lethal challenge with spores from B. cereus G9241 or B. cereus Elc4, a strain that had been isolated from a fatal case of anthrax-like disease. As the pathogenesis of B. cereus anthrax-like disease in mice is dependent on pagA1 and PA-neutralizing antibodies provide protection, AVA immunization may also protect humans from respiratory anthrax-like death.
PMCID: PMC3584855  PMID: 23319564
5.  Role of Protein A in the Evasion of Host Adaptive Immune Responses by Staphylococcus aureus 
mBio  2013;4(5):e00575-13.
Heritable defects in human B cell/antibody development are not associated with increased susceptibility to Staphylococcus aureus infection. Protein A (SpA), a surface molecule of S. aureus, binds the Fcγ domain of immunoglobulin (Ig) and cross-links the Fab domain of VH3-type B cell receptors (IgM). Here we generated S. aureus spa variants harboring amino acid substitutions at four key residues in each of the five Ig-binding domains of SpA. Wild-type S. aureus required SpA binding to Ig to resist phagocytosis and SpA-mediated B cell receptor cross-linking to block antibody development in mice. The spaKKAA mutant, which cannot bind Ig or IgM, was phagocytosed and elicited B cell responses to key virulence antigens that protected animals against lethal S. aureus challenge. The immune evasive attributes of S. aureus SpA were abolished in µMT mice lacking mature B cells and antibodies. Thus, while wild-type S. aureus escapes host immune surveillance, the spaKKAA variant elicits adaptive responses that protect against recurrent infection.
Staphylococcus aureus causes recurrent skin and bloodstream infections without eliciting immunity. Heritable defects in neutrophil and T cell function, but not B cell or antibody development, are associated with increased incidence of S. aureus infection, and efforts to develop antibody-based S. aureus vaccines have thus far been unsuccessful. We show here that the Fcγ and VH3-type Fab binding activities of staphylococcal protein A (SpA) are essential for S. aureus escape from host immune surveillance in mice. The virulence attributes of SpA in mice required mature B cells and immunoglobulin. These results suggest that antibodies and B cells play a key role in the pathogenesis of staphylococcal infections and provide insights into the development of a vaccine against S. aureus.
PMCID: PMC3760252  PMID: 23982075
6.  Sortase-conjugation generates a capsule vaccine that protects guinea pigs against Bacillus anthracis 
Vaccine  2012;30(23):3435-3444.
Capsules protect bacteria against phagocytic clearance. Capsular polysaccharides or polyglutamates have evolved also to resist antigen presentation by immune cells, thereby interfering with the production of opsonophagocytic antibodies. Linking capsular material to a carrier protein stimulates its presentation to the immune system. For many conjugate vaccines this is achieved by a process of random chemical cross-linking. Here we describe a new technology, designated sortase-conjugation, which generates a single amide bond between the C-terminal end of a carrier protein and the capsular material. Sortase-conjugation was used to link the poly-D-γ-glutamic acid (PDGA) capsule of Bacillus anthracis to the receptor binding domain (D4) of protective antigen (PagA). When used as a vaccine, PDGA-D4 conjugate elicited robust antibody responses against both capsule and D4. Immunization with PDGA-D4 afforded guinea pigs complete protection against anthrax challenge with wild-type or pagA mutant B. anthracis Ames.
PMCID: PMC3538850  PMID: 22449424
7.  Abscess Formation and Alpha-Hemolysin Induced Toxicity in a Mouse Model of Staphylococcus aureus Peritoneal Infection 
Infection and Immunity  2012;80(10):3721-3732.
Staphylococcus aureus is a frequent cause of skin infection and sepsis in humans. Preclinical vaccine studies with S. aureus have used a mouse model with intraperitoneal challenge and survival determination as a measure for efficacy. To appreciate the selection of protective antigens in this model, we sought to characterize the pathological attributes of S. aureus infection in the peritoneal cavity. Testing C57BL/6J and BALB/c mice, >109 CFU of S. aureus Newman were needed to produce a lethal outcome in 90% of animals infected via intraperitoneal injection. Both necropsy and histopathology revealed the presence of intraperitoneal abscesses in the vicinity of inoculation sites. Abscesses were comprised of fibrin as well as collagen deposits and immune cells with staphylococci replicating at the center of these lesions. Animals that succumbed to challenge harbored staphylococci in abscess lesions and in blood. The establishment of lethal infections, but not the development of intraperitoneal abscesses, was dependent on S. aureus expression of alpha-hemolysin (Hla). Active immunization with nontoxigenic HlaH35L or passive immunization with neutralizing monoclonal antibodies protected mice against early lethal events associated with intraperitoneal S. aureus infection but did not affect the establishment of abscess lesions. These results characterize a mouse model for the study of intraperitoneal abscess formation by S. aureus, a disease that occurs frequently in humans undergoing continuous ambulatory peritoneal dialysis for end-stage renal disease.
PMCID: PMC3457571  PMID: 22802349
8.  Coagulases as Determinants of Protective Immune Responses against Staphylococcus aureus 
Infection and Immunity  2012;80(10):3389-3398.
During infection, Staphylococcus aureus secretes two coagulases (Coa and von Willebrand factor binding protein [vWbp]), which, following an association with host prothrombin and fibrinogen, form fibrin clots and enable the establishment of staphylococcal disease. Within the genomes of different S. aureus isolates, coagulase gene sequences are variable, and this has been exploited for a classification of types. We show here that antibodies directed against the variable prothrombin binding portion of coagulases confer type-specific immunity through the neutralization of S. aureus clotting activity and protection from staphylococcal disease in mice. By combining variable portions of coagulases from North American isolates into hybrid Coa and vWbp proteins, a subunit vaccine that provided protection against challenge with different coagulase-type S. aureus strains in mice was derived.
PMCID: PMC3457572  PMID: 22825443
9.  Staphylococcus aureus Secretes Coagulase and von Willebrand Factor Binding Protein to Modify the Coagulation Cascade and Establish Host Infections 
Journal of Innate Immunity  2012;4(2):141-148.
Clinical isolates of Staphylococcus aureus secrete coagulases, polypeptides that bind to and activate prothrombin, thereby converting fibrinogen to fibrin and promoting the clotting of plasma or blood. Two staphylococcal products, the canonical coagulase (Coa) as well as the recently identified von Willebrand factor binding protein (vWbp), promote similar modifications of the coagulation cascade during host infection. Staphylococcal binding to fibrinogen or fibrin is an important attribute of disease pathogenesis, which leads to the formation of abscesses and bacterial persistence in host tissues and also enables the pathogen to cause lethal sepsis. Circumstantial evidence suggests that the product of coagulase activity, staphylococci captured within a fibrin meshwork, enable this pathogen to disseminate as thromboembolic lesions and to resist opsonophagocytic clearance by host immune cells. In addition, the coagulation products of staphylococci appear to display discrete differences when compared to those of thrombin-mediated coagulation, the latter representing a key innate defense mechanism against many invading pathogens. Preclinical evidence suggests that inactivation or neutralization of coagulases may prevent the pathogenesis of staphylococcal infections, a strategy that could be used to combat the current epidemic of hospital-acquired infections with drug-resistant S. aureus isolates.
PMCID: PMC3388267  PMID: 22222316
Staphylococcus aureus infection; Coagulation; Host defense; Neutrophils; Proteinases; Sepsis
10.  Synthesis of Lipoteichoic Acids in Bacillus anthracis 
Journal of Bacteriology  2012;194(16):4312-4321.
Lipoteichoic acid (LTA), a glycerol phosphate polymer, is a component of the envelope of Gram-positive bacteria that has hitherto not been identified in Bacillus anthracis, the causative agent of anthrax. LTA synthesis in Staphylococcus aureus and other microbes is catalyzed by the product of the ltaS gene, a membrane protein that polymerizes polyglycerol phosphate from phosphatidyl glycerol. Here we identified four ltaS homologues, designated ltaS1 to -4, in the genome of Bacillus anthracis. Polyglycerol phosphate-specific monoclonal antibodies were used to detect LTA in the envelope of B. anthracis strain Sterne (pXO1+ pXO2−) vegetative forms. B. anthracis mutants lacking ltaS1, ltaS2, ltaS3, or ltaS4 did not display defects in growth or LTA synthesis. In contrast, B. anthracis strains lacking both ltaS1 and ltaS2 were unable to synthesize LTA and exhibited reduced viability, altered envelope morphology, aberrant separation of vegetative forms, and decreased sporulation efficiency. Expression of ltaS1 or ltaS2 alone in B. anthracis as well as in other microbes was sufficient for polyglycerol phosphate synthesis. Thus, similar to S. aureus, B. anthracis employs LtaS enzymes to synthesize LTA, an envelope component that promotes bacterial growth and cell division.
PMCID: PMC3416223  PMID: 22685279
11.  Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis 
Journal of Bacteriology  2012;194(15):3833-3840.
The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings.
PMCID: PMC3416523  PMID: 22609927
12.  Secretion Genes as Determinants of Bacillus anthracis Chain Length 
Journal of Bacteriology  2012;194(15):3841-3850.
Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.
PMCID: PMC3416568  PMID: 22609926
13.  Recurrent infections and immune evasion strategies of Staphylococcus aureus 
Staphylococcus aureus causes purulent skin and soft tissue infections (SSTIs) that frequently reoccur. Staphylococal SSTIs can lead to invasive disease and sepsis, which are among the most significant causes of infectious disease mortality in both developed and developing countries. Human or animal infections with S. aureus do not elicit protective immunity against staphylococcal diseases. Here we review what is known about the immune evasive strategies of S. aureus that enable the pathogen’s escape from protective immune responses. Three secreted products are discussed in detail, staphylococcal protein A (SpA), staphylococcal binder of immunoglobulin (Sbi) and adenosine synthase A (AdsA). By forming a complex with VH3-type IgM on the surface of B cells, SpA functions as a superantigen to modulate antibody responses to staphylococcal infection. SpA also captures pathogen-specific antibodies by binding their Fcγ portion. The latter activity of SpA is shared by Sbi, which also associates with complement factors 3d and factor H to promote the depletion of complement. AdsA synthesizes the immune signaling molecule adenosine, thereby dampening innate and adaptive immune responses during infection. We discuss strategies how the three secreted products of staphylococci may be exploited for the development of vaccines and therapeutics.
PMCID: PMC3538788  PMID: 22088393
14.  ABI domain containing proteins contribute to surface protein display and cell division in Staphylococcus aureus 
Molecular microbiology  2010;78(1):238-252.
The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.
PMCID: PMC3538852  PMID: 20923422
15.  Exploring Staphylococcus aureus pathways to disease for vaccine development 
Seminars in immunopathology  2011;34(2):317-333.
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
PMCID: PMC3539746  PMID: 22130613
MRSA; Iron; Coagulation; Immunmodulation
16.  Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus 
Journal of Bacteriology  2012;194(7):1753-1762.
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.
PMCID: PMC3302473  PMID: 22267518
17.  Protein A-Specific Monoclonal Antibodies and Prevention of Staphylococcus aureus Disease in Mice 
Infection and Immunity  2012;80(10):3460-3470.
Staphylococcus aureus is a leading cause of human soft tissue infections and bacterial sepsis. The emergence of antibiotic-resistant strains (methicillin-resistant S. aureus [MRSA]) has prompted research into staphylococcal vaccines and preventive measures. The envelope of S. aureus is decorated with staphylococcal protein A (SpA), which captures the Fcγ portion of immunoglobulins to prevent opsonophagocytosis and associates with the Fab portion of VH3-type B cell receptors to trigger B cell superantigen activity. Nontoxigenic protein A (SpAKKAA), when used as an immunogen in mice, stimulates humoral immune responses that neutralize the Fcγ and the VH3+ Fab binding activities of SpA and provide protection from staphylococcal abscess formation in mice. Here, we isolated monoclonal antibodies (MAbs) against SpAKKAA that, by binding to the triple-helical bundle fold of its immunoglobulin binding domains (IgBDs), neutralize the Fcγ and Fab binding activities of SpA. SpAKKAA MAbs promoted opsonophagocytic killing of MRSA in mouse and human blood, provided protection from abscess formation, and stimulated pathogen-specific immune responses in a mouse model of staphylococcal disease. Thus, SpAKKAA MAbs may be useful for the prevention and therapy of staphylococcal disease in humans.
PMCID: PMC3457578  PMID: 22825452
18.  Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus  
BMC Microbiology  2012;12:219.
Staphylococcus aureus secretes EsxA and EsxB, two small polypeptides of the WXG100 family of proteins. Genetic analyses have shown that production and secretion of EsxA and EsxB require an intact ESAT-6 Secretion System (ESS), a cluster of genes that is conserved in many Firmicutes and encompasses esxA and esxB . Here, we characterize EssB, one of the proteins encoded by the ESS cluster. EssB is highly conserved in Gram-positive bacteria and belongs to the Cluster of Orthologous Groups of protein COG4499 with no known function.
By generating an internal deletion in essB , we demonstrate that EssB is required for secretion of EsxA. We use a polyclonal antibody to identify EssB and show that the protein fractionates with the plasma membrane of S. aureus . Yet, when produced in Escherichia coli, EssB remains mostly soluble and the purified protein assembles into a highly organized oligomer that can be visualized by electron microscopy. Production of truncated EssB variants in wild-type S. aureus confers a dominant negative phenotype on EsxA secretion.
The data presented here support the notion that EssB may oligomerize and interact with other membrane components to form the WXG100-specific translocon in S. aureus .
PMCID: PMC3489787  PMID: 23006124
ESAT-6 secretion; ESS; WXG100; EssB; Type 7 secretion; Staphylococcus aureus
19.  The SLH-domain protein BslO is a determinant of Bacillus anthracis chain length 
Molecular microbiology  2011;81(1):192-205.
The Gram-positive pathogen Bacillus anthracis grows in characteristic chains of individual, rod-shaped cells. Here, we report the cell-separating activity of BslO, a putative N-acetylglucosaminidase bearing three N-terminal S-layer homology (SLH) domains for association with the secondary cell wall polysaccharide (SCWP). Mutants with an insertional lesion in the bslO gene exhibit exaggerated chain lengths, though individual cell dimensions are unchanged. Purified BslO complements this phenotype in trans, effectively dispersing chains of bslO-deficient bacilli without lysis and localizing to the septa of vegetative cells. Compared to the extremely long chain lengths of csaB bacilli, which are incapable of binding proteins with SLH-domains to SCWP, bslO mutants demonstrate an chaining phenotype that is intermediate between wild-type and csaB. Computational simulation suggests that BslO effects a non-random distribution of B. anthracis chain lengths, implying that all septa are not equal candidates for separation.
PMCID: PMC3124567  PMID: 21585566
20.  Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site*S 
The Journal of Biological Chemistry  2007;282(32):23129-23139.
Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (β-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via β-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery.
PMCID: PMC3366505  PMID: 17545669
21.  A play in four acts: Staphylococcus aureus abscess formation 
Trends in microbiology  2011;19(5):225-232.
Staphylococcus aureus is an important human pathogen that causes skin and soft tissue abscesses. Abscess formation is not unique to staphylococcal infection and purulent discharge has been widely considered a physiological feature of healing and tissue repair. Here we present a different view, whereby S. aureus deploys specific virulence factors to promote abscess lesions that are distinctive for this pathogen. In support of this model, only live S. aureus are able to form abscesses, requiring genes that act at one or more of four discrete stages during the development of these infectious lesions. Protein A and coagulases are distinctive virulence attributes for S. aureus, and humoral immune responses specific for these polypeptides provide protection against abscess formation in animal models of staphylococcal disease.
PMCID: PMC3087859  PMID: 21353779
22.  Protein secretion and surface display in Gram-positive bacteria 
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
PMCID: PMC3297441  PMID: 22411983
type VII secretion; WXG protein; sortase; sorting signal; surface-layer homology domain; surface layer
23.  Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA) 
BMC Biochemistry  2011;12:56.
Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity.
NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates.
Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses.
PMCID: PMC3213008  PMID: 22035583
24.  Preventing Staphylococcus aureus Sepsis through the Inhibition of Its Agglutination in Blood 
PLoS Pathogens  2011;7(10):e1002307.
Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci - coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA) – were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.
Author Summary
Staphylococcus aureus secretes factors that perturb blood coagulation in infected hosts. We report here that three bacterial products – coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA) - act together and promote agglutination, the association of staphylococci with polymerized fibrin cables. Staphylococcal agglutination was associated with thromboembolic lesions in heart tissues and a lethal outcome of S. aureus sepsis in mice. Inhibition of Coa and vWbp with direct thrombin inhibitors, drugs already approved for the prevention of stroke, as well as passive transfer of antibodies specific for Coa, vWbp and ClfA could prevent the pathogenesis of S. aureus sepsis. These results suggest new preventive and/or therapeutic strategies that may improve the outcome of S. aureus sepsis in humans, a disease that is otherwise associated with high mortality.
PMCID: PMC3197598  PMID: 22028651
25.  EsaD, a Secretion Factor for the Ess Pathway in Staphylococcus aureus▿  
Journal of Bacteriology  2011;193(7):1583-1589.
Staphylococcus aureus encodes the Sec-independent Ess secretion pathway, an ortholog of mycobacterial T7 secretion systems which is required for the virulence of this Gram-positive microbe. The Ess (ESX secretion) pathway was previously defined as a genomic cluster of eight genes, esxA, esaA, essA, essB, esaB, essC, esaC, and esxB. essABC encode membrane proteins involved in the stable expression of esxA, esxB, and esaC, genes specifying three secreted polypeptide substrates. esaB, which encodes a small cytoplasmic protein, represses the synthesis of EsaC but not that of EsxA and EsxB. Here we investigated a hitherto uncharacterized gene, esaD, located downstream of esxB. Expression of esaD is activated by mutations in esaB and essB. EsaD, the 617-amino-acid product of esaD, is positioned in the membrane and is also accessible to EsaD-specific antibodies on the bacterial surface. S. aureus mutants lacking esaD are defective in the secretion of EsxA. Following intravenous inoculation of mice, S. aureus esaD mutants generate fewer abscesses with a reduced bacterial load compared to wild-type parent strain Newman. The chromosomes of Listeria and Bacillus species with Ess pathways also harbor esaD homologues downstream of esxB, suggesting that the contributory role of EsaD in Ess secretion may be shared among Gram-positive pathogens.
PMCID: PMC3067666  PMID: 21278286

Results 1-25 (38)