Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Long, ruijin")
1.  Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China 
BMC Microbiology  2012;12:237.
Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production.
Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle.
This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle.
PMCID: PMC3502369  PMID: 23078429
2.  Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau 
Biology Letters  2008;4(6):681-684.
For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai–Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2±1.2 and 7.8±1.1 μg CH4 m−2 h−1 was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8±1.3 μg CH4 m−2 h−1 on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH4 yr−1 in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.
PMCID: PMC2614155  PMID: 18755657
alpine meadows; methane emission; plant community

Results 1-2 (2)