Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("krohn, Oleg V")
1.  Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production 
PLoS ONE  2013;8(3):e59362.
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.
PMCID: PMC3608648  PMID: 23555660
2.  Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression 
BMC Microbiology  2012;12:214.
Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase.
Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase, demonstrated differential expression during transition from exponential to stationary phase.
Relative expression profiles demonstrate which proteins are likely utilized in carbohydrate utilization and end-product synthesis and suggest that H2 synthesis occurs via bifurcating hydrogenases while ethanol synthesis is predominantly catalyzed by a bifunctional aldehyde/alcohol dehydrogenase. Differences in expression profiles of core metabolic proteins in response to growth phase may dictate carbon and electron flux towards energy storage compounds and end-products. Combined knowledge of relative protein expression levels and their changes in response to physiological conditions may aid in targeted metabolic engineering strategies and optimization of fermentation conditions for improvement of biofuels production.
PMCID: PMC3492117  PMID: 22994686
3.  Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location 
Journal of chromatography. A  2006;1141(2):212-225.
The value of reversed-phase high-performance liquid chromatography (RP-HPLC) and the field of proteomics would be greatly enhanced by accurate prediction of retention times of peptides of known composition. The present study investigates the hydrophilicity/hydrophobicity of amino acid side-chains at the N- and C-termini of peptides while varying the functional end-groups at the termini. We substituted all 20 naturally occurring amino acids at the N- and C-termini of a model peptide sequence, where the functional end-groups were Nα-acetyl-X- and Nα-amino-X- at the N-terminus and –X-Cα-carboxyl and -X-Cα-amide at the C-terminus. Amino acid coefficients were subsequently derived from the RP-HPLC retention behaviour of these peptides and compared to each other as well as to coefficients determined in the centre of the peptide chain (internal coefficients). Coefficients generated from residues substituted at the C-terminus differed most (> 2.5 min between the –X-Cα-carboxyl and -X-Cα-amide peptide series) for hydrophobic side-chains. A similar result was seen for the Nα-acetyl-X- and Nα-amino-X- peptide series, where the largest differences in coefficient values (> 2 min) were observed for hydrophobic peptides. Coefficients derived from substitutions at the C-terminus for hydrophobic amino acids were dramatically different compared to internal coefficients for hydrophobic side-chains, ranging from 17.1 min for Trp to 4.8 min for Cys. In contrast, coefficients derived from substitutions at the N-terminus showed relatively small differences from the internal coefficients. Subsequent prediction of peptide retention time, within an error of just 0.4 min, was achieved by a predictive algorithm using a combination of internal coefficients and a weighted coefficient for the C-terminal residue.
PMCID: PMC2722105  PMID: 17187811
4.  The effects of infliximab therapy on the serum proteome of rheumatoid arthritis patients 
Although the clinical effects of infliximab therapy in rheumatoid arthritis have been documented extensively, the biological effects of this intervention continue to be defined. We sought to examine the impact of infliximab therapy on the serum proteome of rheumatoid arthritis patients by means of a mass spectrometry-based approach.
Sera from 10 patients with rheumatoid arthritis were obtained prior to and following 12 weeks of infliximab therapy using a standard clinical protocol. The sera were immunodepleted of the 12 highest abundance proteins, labeled by the iTRAQ (isobaric tagging for relative and absolute protein quantification) technique, and analyzed by mass spectrometry to identify proteomic changes associated with treatment.
An average of 373 distinct proteins were identified per patient with greater than 95% confidence. In the 3 patients demonstrating the most robust clinical responses, changes of greater than 20% in the serum levels were observed in 39 proteins following treatment. The majority of these proteins were regulated directly or indirectly by tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa-B, with acute-phase proteins being uniformly down-regulated. A number of proteins, including members of the SERPIN family and S100A8, were down-regulated irrespective of clinical response.
The present study demonstrates that a robust clinical response to infliximab is associated with the down-regulation of a spectrum of serum proteins regulated by TNF-α, and provides a possible basis for defining the broader biological effects of the treatment in vivo.
PMCID: PMC2688177  PMID: 19265537
5.  MALDI QqTOF MS Combined with Off-line HPLC for Characterization of Protein Primary Structure and Post-Translational Modifications 
The addition of off-line high-performance liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry greatly reduces congestion in the mass spectra, and also provides complete decoupling of the separation process from mass detection and measurement. This removes the time constraints inherent in on-line coupling, and so enables the detailed mass-spectrometric study of samples at later times. We describe here our use of this method to successfully characterize two “unknown” protein mixtures that were set as problems by the ABRF Proteomics Research Group (PRG) in the years 2003 and 2004.
PMCID: PMC2291759  PMID: 16522866
MALDI; HPLC; off-line coupling; phosphorylation; ABRF Proteomics Research Group

Results 1-5 (5)