PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence†  
Journal of Bacteriology  2004;186(16):5442-5449.
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.
doi:10.1128/JB.186.16.5442-5449.2004
PMCID: PMC490883  PMID: 15292146
2.  A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus 
Current Biology  2014;24(11):1234-1240.
Summary
Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals.
Highlights
•A rhodopsin-guanylate cyclase gene fusion is involved in B. emersonii phototaxis•The rhodopsin fusion protein BeGC1 is localized to the zoospore eyespot apparatus•Endogenous retinal substitution by retinalA1 reconstitutes green light phototaxis•Zoospore phototaxis uses cGMP as a second messenger similar to vertebrate vision
Avelar et al. use genome sequencing, molecular inhibition, and light-sensing phenotype experiments, combined with immunolocalization data, to show that a type I rhodopsin-guanylyl cyclase fusion protein localizes to the “eyespot” and is involved in green light phototaxis in zoospores of the Blastocladiomycete fungus Blastocladiella emersonii.
doi:10.1016/j.cub.2014.04.009
PMCID: PMC4046227  PMID: 24835457
3.  Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress 
BMC Microbiology  2012;12:210.
Background
The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes.
Results
In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF.
Conclusion
A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
doi:10.1186/1471-2180-12-210
PMCID: PMC3511200  PMID: 22985357
Stress response; ECF sigma factor σF; Chromium; Cadmium; Caulobacter crescentus
4.  Transcriptional Response to Hypoxia in the Aquatic Fungus Blastocladiella emersonii▿† 
Eukaryotic Cell  2010;9(6):915-925.
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe2+ ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1α, caused a significant decrease in the levels of certain upregulated hypoxic genes.
doi:10.1128/EC.00047-10
PMCID: PMC2901646  PMID: 20418381
5.  Global Gene Expression Analysis during Sporulation of the Aquatic Fungus Blastocladiella emersonii ▿ †  
Eukaryotic Cell  2010;9(3):415-423.
The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca2+, and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.
doi:10.1128/EC.00312-09
PMCID: PMC2837974  PMID: 20038607
6.  Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon 
BMC Microbiology  2010;10:231.
Background
Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat.
Results
In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter.
Conclusions
Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.
doi:10.1186/1471-2180-10-231
PMCID: PMC3224663  PMID: 20799976
7.  Global Gene Expression Analysis during Germination in the Chytridiomycete Blastocladiella emersonii▿ †  
Eukaryotic Cell  2008;8(2):170-180.
Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus.
doi:10.1128/EC.00330-08
PMCID: PMC2643612  PMID: 19098129
8.  Transcriptome Analysis in Response to Heat Shock and Cadmium in the Aquatic Fungus Blastocladiella emersonii▿ †  
Eukaryotic Cell  2007;6(6):1053-1062.
The global transcriptional response of the chytridiomycete Blastocladiella emersonii to environmental stress conditions was explored by sequencing a large number of expressed sequence tags (ESTs) from three distinct cDNA libraries, constructed with mRNA extracted from cells exposed to heat shock and different concentrations of cadmium chloride. A total of 6,350 high-quality EST sequences were obtained and assembled into 2,326 putative unigenes, 51% of them not previously described in B. emersonii. To approximately 59% of the unigenes it was possible to assign an orthologue in another organism, whereas 41% of them remained without a putative identification, with transcripts related to protein folding and antioxidant activity being highly enriched in the stress libraries. A microarray chip was constructed encompassing 3,773 distinct ESTs from the B. emersonii transcriptome presently available, which correspond to a wide range of biological processes. Global gene expression analysis of B. emersonii cells exposed to stress conditions revealed a large number of differentially expressed genes: 122 up- and 60 downregulated genes during heat shock and 189 up- and 110 downregulated genes during exposure to cadmium. The main functional categories represented among the upregulated genes were protein folding and proteolysis, proteins with antioxidant properties, and cellular transport. Interestingly, in response to cadmium stress, B. emersonii cells induced genes encoding six different glutathione S-transferases and six distinct metacaspases, as well as genes coding for several proteins of sulfur amino acid metabolism, indicating that cadmium causes oxidative stress and apoptosis in this fungus.
doi:10.1128/EC.00053-07
PMCID: PMC1951522  PMID: 17449658
9.  The Single Extracytoplasmic-Function Sigma Factor of Xylella fastidiosa Is Involved in the Heat Shock Response and Presents an Unusual Regulatory Mechanism▿  
Journal of Bacteriology  2006;189(2):551-560.
Genome sequence analysis of the bacterium Xylella fastidiosa revealed the presence of two genes, named rpoE and rseA, predicted to encode an extracytoplasmic function (ECF) sigma factor and an anti-sigma factor, respectively. In this work, an rpoE null mutant was constructed in the citrus strain J1a12 and shown to be sensitive to exposure to heat shock and ethanol. To identify the X. fastidiosa σE regulon, global gene expression profiles were obtained by DNA microarray analysis of bacterial cells under heat shock, identifying 21 σE-dependent genes. These genes encode proteins belonging to different functional categories, such as enzymes involved in protein folding and degradation, signal transduction, and DNA restriction modification and hypothetical proteins. Several putative σE-dependent promoters were mapped by primer extension, and alignment of the mapped promoters revealed a consensus sequence similar to those of ECF sigma factor promoters of other bacteria. Like other ECF sigma factors, rpoE and rseA were shown to comprise an operon in X. fastidiosa, together with a third open reading frame (XF2241). However, upon heat shock, rpoE expression was not induced, while rseA and XF2241 were highly induced at a newly identified σE-dependent promoter internal to the operon. Therefore, unlike many other ECF sigma factors, rpoE is not autoregulated but instead positively regulates the gene encoding its putative anti-sigma factor.
doi:10.1128/JB.00986-06
PMCID: PMC1797396  PMID: 17098905
10.  GroES/GroEL and DnaK/DnaJ Have Distinct Roles in Stress Responses and during Cell Cycle Progression in Caulobacter crescentus▿  
Journal of Bacteriology  2006;188(23):8044-8053.
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.
doi:10.1128/JB.00824-06
PMCID: PMC1698207  PMID: 16980445
11.  Global Gene Expression Analysis of the Heat Shock Response in the Phytopathogen Xylella fastidiosa 
Journal of Bacteriology  2006;188(16):5821-5830.
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for σ32 promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
doi:10.1128/JB.00182-06
PMCID: PMC1540087  PMID: 16885450
12.  Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii 
BMC Genomics  2006;7:177.
Background
Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis.
Results
Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots.
Conclusion
Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.
doi:10.1186/1471-2164-7-177
PMCID: PMC1550239  PMID: 16836762
13.  A Caulobacter crescentus Extracytoplasmic Function Sigma Factor Mediating the Response to Oxidative Stress in Stationary Phase†  
Journal of Bacteriology  2006;188(5):1835-1846.
Alternative sigma factors of the extracytoplasmic function (ECF) subfamily are important regulators of stress responses in bacteria and have been implicated in the control of homeostasis of the extracytoplasmic compartment of the cell. This work describes the characterization of sigF, encoding 1 of the 13 members of this subfamily identified in Caulobacter crescentus. A sigF-null strain was obtained and shown to be severely impaired in resistance to oxidative stress, caused by hydrogen peroxide treatment, exclusively during the stationary phase. Although sigF mRNA levels decrease in stationary-phase cells, the amount of σF protein is greatly increased at this stage, indicating a posttranscriptional control. Data obtained indicate that the FtsH protease is either directly or indirectly involved in the control of σF levels, as cells lacking this enzyme present larger amounts of the sigma factor. Increased stability of σF protein in stationary-phase cells of the parental strain and in exponential-phase cells of the ftsH-null strain is also demonstrated. Transcriptome analysis of the sigF-null strain led to the identification of eight genes regulated by σF during the stationary phase, including sodA and msrA, which are known to be involved in oxidative stress response.
doi:10.1128/JB.188.5.1835-1846.2006
PMCID: PMC1426549  PMID: 16484194
14.  BayGO: Bayesian analysis of ontology term enrichment in microarray data 
BMC Bioinformatics  2006;7:86.
Background
The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem.
Results
BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses.
Conclusion
The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
doi:10.1186/1471-2105-7-86
PMCID: PMC1440873  PMID: 16504085
15.  Gene Discovery and Expression Profile Analysis through Sequencing of Expressed Sequence Tags from Different Developmental Stages of the Chytridiomycete Blastocladiella emersonii†  
Eukaryotic Cell  2005;4(2):455-464.
Blastocladiella emersonii is an aquatic fungus of the chytridiomycete class which diverged early from the fungal lineage and is notable for the morphogenetic processes which occur during its life cycle. Its particular taxonomic position makes this fungus an interesting system to be considered when investigating phylogenetic relationships and studying the biology of lower fungi. To contribute to the understanding of the complexity of the B. emersonii genome, we present here a survey of expressed sequence tags (ESTs) from various stages of the fungal development. Nearly 20,000 cDNA clones from 10 different libraries were partially sequenced from their 5′ end, yielding 16,984 high-quality ESTs. These ESTs were assembled into 4,873 putative transcripts, of which 48% presented no matches with existing sequences in public databases. As a result of Gene Ontology (GO) project annotation, 1,680 ESTs (35%) were classified into biological processes of the GO structure, with transcription and RNA processing, protein biosynthesis, and transport as prevalent processes. We also report full-length sequences, useful for construction of molecular phylogenies, and several ESTs that showed high similarity with known proteins, some of which were not previously described in fungi. Furthermore, we analyzed the expression profile (digital Northern analysis) of each transcript throughout the life cycle of the fungus using Bayesian statistics. The in silico approach was validated by Northern blot analysis with good agreement between the two methodologies.
doi:10.1128/EC.4.2.455-464.2005
PMCID: PMC549328  PMID: 15701807
16.  Functional and Structural Analysis of HrcA Repressor Protein from Caulobacter crescentus 
Journal of Bacteriology  2004;186(20):6759-6767.
A large number of bacteria regulate chaperone gene expression during heat shock by the HrcA-CIRCE system, in which the DNA element called CIRCE serves as binding site for the repressor protein HrcA under nonstress conditions. In Caulobacter crescentus, the groESL operon presents a dual type of control. Heat shock induction is controlled by a σ32-dependent promoter and the HrcA-CIRCE system plays a role in regulation of groESL expression under physiological temperatures. To study the activity of HrcA in vitro, we purified a histidine-tagged version of the protein, and specific binding to the CIRCE element was obtained by gel shift assays. The amount of retarded DNA increased significantly in the presence of GroES/GroEL, suggesting that the GroE chaperonin machine modulates HrcA activity. Further evidence of this modulation was obtained using lacZ transcription fusions with the groESL regulatory region in C. crescentus cells, producing different amounts of GroES/GroEL. In addition, we identified the putative DNA-binding domain of HrcA through extensive protein sequence comparison and constructed various HrcA mutant proteins containing single amino acid substitutions in or near this region. In vitro and in vivo experiments with these mutated proteins indicated several amino acids important for repressor activity.
doi:10.1128/JB.186.20.6759-6767.2004
PMCID: PMC522201  PMID: 15466027

Results 1-16 (16)