Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163 
Open Biology  2014;4(2):130154.
Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.
PMCID: PMC3938052  PMID: 24573368
Oenococcus oeni; proteome; two-dimensional electrophoresis
2.  Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress 
BMC Microbiology  2012;12:247.
Ingestion of fermented foods containing high levels of biogenic amines (BA) can be deleterious to human health. Less obvious is the threat posed by BA producing organisms contained within the food which, in principle, could form BA after ingestion even if the food product itself does not initially contain high BA levels. In this work we have investigated the production of tyramine and putrescine by Lactobacillus brevis IOEB 9809, of wine origin, under simulated gastrointestinal tract (GIT) conditions.
An in vitro model that simulates the normal physiological conditions in the human digestive tract, as well as Caco-2 epithelial human cell lines, was used to challenge L. brevis IOEB 9809, which produced both tyramine and putrescine under all conditions tested. In the presence of BA precursors and under mild gastric stress, a correlation between enhancement of bacterial survival and a synchronous transcriptional activation of the tyramine and putrescine biosynthetic pathways was detected. High levels of both BA were observed after exposure of the bacterium to Caco-2 cells.
L. brevis IOEB 9809 can produce tyramine and putrescine under simulated human digestive tract conditions. The results indicate that BA production may be a mechanism that increases bacterial survival under gastric stress.
PMCID: PMC3499163  PMID: 23113922
Biogenic amines; Lactic acid bacteria; Putrescine; Tyramine; Food safety; Food toxicity
3.  Role of Tyramine Synthesis by Food-Borne Enterococcus durans in Adaptation to the Gastrointestinal Tract Environment ▿  
Biogenic amines in food constitute a human health risk. Here we report that tyramine-producing Enterococcus durans strain IPLA655 (from cheese) was able to produce tyramine under conditions simulating transit through the gastrointestinal tract. Activation of the tyramine biosynthetic pathway contributed to binding and immunomodulation of enterocytes.
PMCID: PMC3020552  PMID: 21097601
4.  Probiotic Properties of the 2-Substituted (1,3)-β-d-Glucan-Producing Bacterium Pediococcus parvulus 2.6▿  
Applied and Environmental Microbiology  2009;75(14):4887-4891.
Exopolysaccharides have prebiotic potential and contribute to the rheology and texture of fermented foods. Here we have analyzed the in vitro bioavailability and immunomodulatory properties of the 2-substituted (1,3)-β-d-glucan-producing bacterium Pediococcus parvulus 2.6. It resists gastrointestinal stress, adheres to Caco-2 cells, and induces the production of inflammation-related cytokines by polarized macrophages.
PMCID: PMC2708447  PMID: 19465528

Results 1-4 (4)