Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression 
BMC Microbiology  2012;12:214.
Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase.
Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase, demonstrated differential expression during transition from exponential to stationary phase.
Relative expression profiles demonstrate which proteins are likely utilized in carbohydrate utilization and end-product synthesis and suggest that H2 synthesis occurs via bifurcating hydrogenases while ethanol synthesis is predominantly catalyzed by a bifunctional aldehyde/alcohol dehydrogenase. Differences in expression profiles of core metabolic proteins in response to growth phase may dictate carbon and electron flux towards energy storage compounds and end-products. Combined knowledge of relative protein expression levels and their changes in response to physiological conditions may aid in targeted metabolic engineering strategies and optimization of fermentation conditions for improvement of biofuels production.
PMCID: PMC3492117  PMID: 22994686
2.  The effects of infliximab therapy on the serum proteome of rheumatoid arthritis patients 
Although the clinical effects of infliximab therapy in rheumatoid arthritis have been documented extensively, the biological effects of this intervention continue to be defined. We sought to examine the impact of infliximab therapy on the serum proteome of rheumatoid arthritis patients by means of a mass spectrometry-based approach.
Sera from 10 patients with rheumatoid arthritis were obtained prior to and following 12 weeks of infliximab therapy using a standard clinical protocol. The sera were immunodepleted of the 12 highest abundance proteins, labeled by the iTRAQ (isobaric tagging for relative and absolute protein quantification) technique, and analyzed by mass spectrometry to identify proteomic changes associated with treatment.
An average of 373 distinct proteins were identified per patient with greater than 95% confidence. In the 3 patients demonstrating the most robust clinical responses, changes of greater than 20% in the serum levels were observed in 39 proteins following treatment. The majority of these proteins were regulated directly or indirectly by tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa-B, with acute-phase proteins being uniformly down-regulated. A number of proteins, including members of the SERPIN family and S100A8, were down-regulated irrespective of clinical response.
The present study demonstrates that a robust clinical response to infliximab is associated with the down-regulation of a spectrum of serum proteins regulated by TNF-α, and provides a possible basis for defining the broader biological effects of the treatment in vivo.
PMCID: PMC2688177  PMID: 19265537

Results 1-2 (2)