PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("mojo, Victor")
1.  NCBI2RDF: Enabling Full RDF-Based Access to NCBI Databases 
BioMed Research International  2013;2013:983805.
RDF has become the standard technology for enabling interoperability among heterogeneous biomedical databases. The NCBI provides access to a large set of life sciences databases through a common interface called Entrez. However, the latter does not provide RDF-based access to such databases, and, therefore, they cannot be integrated with other RDF-compliant databases and accessed via SPARQL query interfaces. This paper presents the NCBI2RDF system, aimed at providing RDF-based access to the complete NCBI data repository. This API creates a virtual endpoint for servicing SPARQL queries over different NCBI repositories and presenting to users the query results in SPARQL results format, thus enabling this data to be integrated and/or stored with other RDF-compliant repositories. SPARQL queries are dynamically resolved, decomposed, and forwarded to the NCBI-provided E-utilities programmatic interface to access the NCBI data. Furthermore, we show how our approach increases the expressiveness of the native NCBI querying system, allowing several databases to be accessed simultaneously. This feature significantly boosts productivity when working with complex queries and saves time and effort to biomedical researchers. Our approach has been validated with a large number of SPARQL queries, thus proving its reliability and enhanced capabilities in biomedical environments.
doi:10.1155/2013/983805
PMCID: PMC3745940  PMID: 23984425
2.  e-MIR2: a public online inventory of medical informatics resources 
Background
Over the past years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for the Medical Informatics (MI) field, so that locating and accessing them currently remains a difficult and time-consuming task.
Description
We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. We define informatics resources as all those elements that constitute, serve to define or are used by informatics systems, ranging from architectures or development methodologies to terminologies, vocabularies, databases or tools. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources’ names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different classification schemas by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the classification schemas. The classification algorithm identifies the categories associated with resources and annotates them accordingly. The database is then populated with this data after manual curation and validation.
Conclusions
We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contains 609 resources at the time of writing and is available at http://www.gib.fi.upm.es/eMIR2. We are continuing to expand the number of available resources by taking into account further publications as well as suggestions from users and resource developers.
doi:10.1186/1472-6947-12-82
PMCID: PMC3441434  PMID: 22857741
Medical informatics; Cataloging; Classification; Software resources; Information storage and retrieval; Search engine; Database; Information management; Folksonomies; Social tagging
3.  Nanoinformatics: a new area of research in nanomedicine 
Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and –omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings.
doi:10.2147/IJN.S24582
PMCID: PMC3410693  PMID: 22866003
biomedical informatics; nanomedicine; nanotoxicology; ontologies; electronic health records
4.  CDAPubMed: a browser extension to retrieve EHR-based biomedical literature 
Background
Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs.
Results
We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination.
Conclusions
CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems.
doi:10.1186/1472-6947-12-29
PMCID: PMC3366875  PMID: 22480327
5.  BIRI: a new approach for automatically discovering and indexing available public bioinformatics resources from the literature 
BMC Bioinformatics  2009;10:320.
Background
The rapid evolution of Internet technologies and the collaborative approaches that dominate the field have stimulated the development of numerous bioinformatics resources. To address this new framework, several initiatives have tried to organize these services and resources. In this paper, we present the BioInformatics Resource Inventory (BIRI), a new approach for automatically discovering and indexing available public bioinformatics resources using information extracted from the scientific literature. The index generated can be automatically updated by adding additional manuscripts describing new resources. We have developed web services and applications to test and validate our approach. It has not been designed to replace current indexes but to extend their capabilities with richer functionalities.
Results
We developed a web service to provide a set of high-level query primitives to access the index. The web service can be used by third-party web services or web-based applications. To test the web service, we created a pilot web application to access a preliminary knowledge base of resources. We tested our tool using an initial set of 400 abstracts. Almost 90% of the resources described in the abstracts were correctly classified. More than 500 descriptions of functionalities were extracted.
Conclusion
These experiments suggest the feasibility of our approach for automatically discovering and indexing current and future bioinformatics resources. Given the domain-independent characteristics of this tool, it is currently being applied by the authors in other areas, such as medical nanoinformatics. BIRI is available at .
doi:10.1186/1471-2105-10-320
PMCID: PMC2765974  PMID: 19811635
6.  Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience 
Objective
The European INFOBIOMED Network of Excellence 1 recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams.
Design
A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a ‘brokerage service’ which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills.
Measurements
This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out.
Results
The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork.
Conclusion
The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.
doi:10.1197/jamia.M2488
PMCID: PMC2274784  PMID: 18096914
7.  INFOBIOMED: European Network of Excellence on Biomedical Informatics to Support Individualised Healthcare 
INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included.
PMCID: PMC1560781  PMID: 16779328
8.  Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine? 
In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface.
doi:10.1197/jamia.M1305
PMCID: PMC264428  PMID: 12925552

Results 1-9 (9)