PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells 
Oncotarget  2014;5(15):6049-6062.
MicroRNA-101 has been implicated as a tumor suppressor miRNA in human tumors. However, its potential functional impact and the underlying mechanisms in endometrial cancer progression have not been determined. Here, we report that in aggressive endometrial cancer cells, re-expression of microRNA-101 leads to inhibition of cell proliferation and induction of apoptosis and senescence. Ectopic overexpression of microRNA-101 attenuates the epithelial-mesenchymal transition-associated cancer cell migration and invasion, abrogates the sphere-forming capacity and enhances chemosensitivity to paclitaxel. Algorithm and microarray-based strategies identifies potential microRNA-101 targets. Among these, we validated EZH2, MCL-1 and FOS as direct targets of miR-101 and silencing of these genes mimics the tumor suppressive effects observed on promoting microRNA-101 function. Importantly, further results suggest an inverse correlation between low miR-101 and high EZH2, MCL-1 and FOS expression in EC specimens. We conclude that, as a crucial tumor suppressor, microRNA-101 suppresses cell proliferation, invasiveness and self-renewal in aggressive endometrial cancer cells via modulating multiple critical oncogenes. The microRNA-101-EZH2/MCL-1/FOS axis is a potential therapeutic target for endometrial cancer.
PMCID: PMC4171612  PMID: 25153722
microRNA-101; proliferation; EMT; EZH2; MCL-1; FOS
2.  Quantitative trait locus analysis of resistance to panicle blast in the rice cultivar Miyazakimochi 
Rice  2014;7(1):2.
Background
Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited, with only one panicle blast resistance gene, Pb1, isolated so far. The japonica cultivar Miyazakimochi shows resistance to panicle blast, yet the genetic components accounting for this resistance remain to be determined.
Results
In this study, we evaluated the panicle blast resistance of populations derived from a cross between Miyazakimochi and the Bikei 22 cultivar, which is susceptible to both leaf and panicle blast. The phenotypic analyses revealed no correlation between panicle blast resistance and leaf blast resistance. Quantitative trait locus (QTL) analysis of 158 recombinant inbred lines using 112 developed genome-wide and 35 previously reported polymerase chain reaction (PCR) markers revealed the presence of two QTLs conferring panicle blast resistance in Miyazakimochi: a major QTL, qPbm11, on chromosome 11; and a minor QTL, qPbm9, on chromosome 9. To clarify the contribution of these QTLs to panicle blast resistance, 24 lines homozygous for each QTL were selected from 2,818 progeny of a BC2F7 backcrossed population, and characterized for disease phenotypes. The panicle blast resistance of the lines harboring qPbm11 was very similar to the resistant donor parental cultivar Miyazakimochi, whereas the contribution of qPbm9 to the resistance was small. Genotyping of the BC2F7 individuals highlighted the overlap between the qPbm11 region and a locus of the panicle blast resistance gene, Pb1. Reverse transcriptase PCR analysis revealed that the Pb1 transcript was absent in the panicles of Miyazakimochi, demonstrating that qPbm11 is a novel genetic component of panicle blast resistance.
Conclusions
This study revealed that Miyazakimochi harbors a novel panicle blast resistance controlled mainly by the major QTL qPbm11. qPbm11 is distinct from Pb1 and could be a genetic source for breeding panicle blast resistance, and will improve understanding of the molecular basis of host resistance to panicle blast.
doi:10.1186/s12284-014-0002-9
PMCID: PMC4052777  PMID: 24920970
Oryza sativa L; Magnaporthe oryzae; Panicle blast resistance; QTL
3.  Expression of steroid and xenobiotic receptor in uterine carcinosarcoma, leiomyosarcoma and endometrial stromal sarcoma 
Oncology Letters  2012;5(3):835-839.
We analyzed the expression of the steroid and xenobiotic receptor (SXR) in human uterine sarcomas and evaluated its clinical significance. Forty-seven cases with archival specimens were examined for SXR expression using immunohistochemistry. All cases were scored using a semi-quantitative histological scoring (HSCORE) method. Specimens with a HSCORE >40 were regarded as SXR-positive. Various clinicopathological variables, including the expression status of estrogen receptor (ER)-α, progesterone receptor (PR) and Ki67 (MIB-1) were examined. The mean SXR HSCOREs of carcinosarcoma (CS) and leiomyosarcoma (LMS) were 9.13 and 23.6, respectively, and SXR-positive rates were 3 out of 24 (12.5%) and 4 out of 17 (23.5%), respectively. SXR was not detected in endometrial stromal sarcoma (ESS). In CS cases, significant differences were detected between the expression of SXR and age and disease stages. There was no significant correlation between SXR-positive status and either disease-free survival or overall survival. Our results support an association between SXR and malignant behavior. Our results show that overexpression of SXR may represent a useful marker to identify patients with advanced-stage CS. In addition, our results showed that SXR may aid in the diagnosis of uterine sarcomas.
doi:10.3892/ol.2012.1094
PMCID: PMC3576214  PMID: 23443531
steroid and xenobiotic receptor; uterine sarcoma; immunohistochemistry; histological scoring
4.  High-throughput detection of aberrant imprint methylation in the ovarian cancer by the bisulphite PCR-Luminex method 
Background
Aberrant DNA methylation leads to loss of heterozygosity (LOH) or loss of imprinting (LOI) as the first hit during human carcinogenesis. Recently we developed a new high-throughput, high-resolution DNA methylation analysis method, bisulphite PCR-Luminex (BPL), using sperm DNA and demonstrated the effectiveness of this novel approach in rapidly identifying methylation errors.
Results
In the current study, we applied the BPL method to the analysis of DNA methylation for identification of prognostic panels of DNA methylation cancer biomarkers of imprinted genes. We found that the BPL method precisely quantified the methylation status of specific DNA regions in somatic cells. We found a higher frequency of LOI than LOH. LOI at IGF2, PEG1 and H19 were frequent alterations, with a tendency to show a more hypermethylated state. We detected changes in DNA methylation as an early event in ovarian cancer. The degree of LOI (LOH) was associated with altered DNA methylation at IGF2/H19 and PEG1.
Conclusions
The relative ease of BPL method provides a practical method for use within a clinical setting. We suggest that DNA methylation of H19 and PEG1 differentially methylated regions (DMRs) may provide novel biomarkers useful for screening, diagnosis and, potentially, for improving the clinical management of women with human ovarian cancer.
doi:10.1186/1755-8794-5-8
PMCID: PMC3342152  PMID: 22443985
Genomic imprinting; Ovarian cancer; DNA methylation; Bisulphite PCR-Luminex(BPL)method; LOI (loss of imprinting)
5.  DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm 
European Journal of Human Genetics   2009;17(12):1582-1591.
There is an increased prevalence of imprinting disorders, such as Beckwith–Wiedemann syndrome, associated with human assisted reproductive technologies (ART). Work on animal models suggests that in vitro culture may be the source of these imprinting errors. However, in this study we report that, in some cases, the errors are inherited from the father. We analyzed DNA methylation at seven autosomal imprinted loci and the XIST locus in 78 paired DNA samples. In seven out of seventeen cases where there was abnormal DNA methylation in the ART sample (41%), the identical alterations were present in the parental sperm. Furthermore, we also identified DNA sequence variations in the gene encoding DNMT3L, which were associated with the abnormal paternal DNA methylation. Both the imprinting errors and the DNA sequence variants were more prevalent in patients with oligospermia. Our data suggest that the increase in the incidence of imprinting disorders in individuals born by ART may be due, in some cases, to the use of sperm with intrinsic imprinting mutations.
doi:10.1038/ejhg.2009.68
PMCID: PMC2845511  PMID: 19471309
genomic imprinting; assisted reproductive technologies; DNA methylation; oligospermic patients; DNA methyltransferase 3-like protein
6.  DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm 
European Journal of Human Genetics  2009;17(12):1582-1591.
There is an increased prevalence of imprinting disorders, such as Beckwith–Wiedemann syndrome, associated with human assisted reproductive technologies (ART). Work on animal models suggests that in vitro culture may be the source of these imprinting errors. However, in this study we report that, in some cases, the errors are inherited from the father. We analyzed DNA methylation at seven autosomal imprinted loci and the XIST locus in 78 paired DNA samples. In seven out of seventeen cases where there was abnormal DNA methylation in the ART sample (41%), the identical alterations were present in the parental sperm. Furthermore, we also identified DNA sequence variations in the gene encoding DNMT3L, which were associated with the abnormal paternal DNA methylation. Both the imprinting errors and the DNA sequence variants were more prevalent in patients with oligospermia. Our data suggest that the increase in the incidence of imprinting disorders in individuals born by ART may be due, in some cases, to the use of sperm with intrinsic imprinting mutations.
doi:10.1038/ejhg.2009.68
PMCID: PMC2845511  PMID: 19471309
genomic imprinting; assisted reproductive technologies; DNA methylation; oligospermic patients; DNA methyltransferase 3-like protein

Results 1-6 (6)