PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  A Genome- and Phenome-Wide Association Study to Identify Genetic Variants Influencing Platelet Count and Volume and their Pleiotropic Effects 
Human genetics  2013;133(1):10.1007/s00439-013-1355-7.
Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways. We conducted an electronic medical record (EMR)-based study to identify common variants that influence inter-individual variation in the number of circulating platelets (PLT) and mean platelet volume (MPV), by performing a genome-wide association study (GWAS). We characterized association of variants influencing MPV and PLT using functional, pathway and disease enrichment analysis assess pleiotropic effects of such variants by performing a phenome-wide association study (PheWAS) with a wide range of EMR-derived phenotypes. A total of 13,582 participants in the electronic MEdical Records and GEnomic (eMERGE) network had data for PLT and 6,291 participants had data for MPV. We identified 5 chromosomal regions associated with PLT and 8 associated with MPV at genome-wide significance (P<5E-8). In addition, we replicated 20 SNPs (out of 56 SNPs (α: 0.05/56=9E-4)) influencing PLT and 22 SNPs (out of 29 SNPs (α: 0.05/29=2E-3)) influencing MPV in a meta-analysis of GWAS of PLT and MPV. While our GWAS did not reveal any novel associations, our functional analyses revealed that genes in these regions influence thrombopoiesis and encode kinases, membrane proteins, proteins involved in cellular trafficking, transcription factors, proteasome complex subunits, proteins of signal transduction pathways, proteins involved in megakaryocyte development and platelet production and hemostasis. PheWAS using a single-SNP Bonferroni correction for 1368 diagnoses (0.05/1368=3.6E-5) revealed that several variants in these genes have pleiotropic associations with myocardial infarction, autoimmune and hematologic disorders. We conclude that multiple genetic loci influence interindividual variation in platelet traits and also have significant pleiotropic effects; the related genes are in multiple functional pathways including those relevant to thrombopoiesis.
doi:10.1007/s00439-013-1355-7
PMCID: PMC3880605  PMID: 24026423
2.  Genetic Variants Associated with Serum Thyroid Stimulating Hormone (TSH) Levels in European Americans and African Americans from the eMERGE Network 
PLoS ONE  2014;9(12):e111301.
Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10−17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10−6, β = −0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = −0.09), VEGFA (rs11755845 p = 0.01, β = −0.13), and NFIA (rs334699 p = 1.50×10−3, β = −0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic studies in more diverse populations.
doi:10.1371/journal.pone.0111301
PMCID: PMC4249871  PMID: 25436638
3.  Technical Desiderata for the Integration of Genomic Data into Electronic Health Records 
Journal of Biomedical Informatics  2011;45(3):419-422.
The era of “Personalized Medicine,” guided by individual molecular variation in DNA, RNA, expressed proteins and other forms of high volume molecular data brings new requirements and challenges to the design and implementation of Electronic Health Records (EHRs). In this article we describe the characteristics of biomolecular data that differentiate it from other classes of data commonly found in EHRs, enumerate a set of technical desiderata for its management in healthcare settings, and offer a candidate technical approach to its compact and efficient representation in operational systems.
doi:10.1016/j.jbi.2011.12.005
PMCID: PMC3328607  PMID: 22223081
Electronic Health Records; Genomics; Knowledge representation; Data compression
4.  Genome- and Phenome-Wide Analysis of Cardiac Conduction Identifies Markers of Arrhythmia Risk 
Circulation  2013;127(13):1377-1385.
Background
Electrocardiographic QRS duration, a measure of cardiac intraventricular conduction, varies ~2-fold in individuals without cardiac disease. Slow conduction may promote reentrant arrhythmias.
Methods and Results
We performed a genome-wide association study (GWAS) to identify genomic markers of QRS duration in 5,272 individuals without cardiac disease selected from electronic medical record (EMR) algorithms at five sites in the Electronic Medical Records and Genomics (eMERGE) network. The most significant loci were evaluated within the CHARGE consortium QRS GWAS meta-analysis. Twenty-three single nucleotide polymorphisms in 5 loci, previously described by CHARGE, were replicated in the eMERGE samples; 18 SNPs were in the chromosome 3 SCN5A and SCN10A loci, where the most significant SNPs were rs1805126 in SCN5A with p=1.2×10−8 (eMERGE) and p=2.5×10−20 (CHARGE) and rs6795970 in SCN10A with p=6×10−6 (eMERGE) and p=5×10−27 (CHARGE). The other loci were in NFIA, near CDKN1A, and near C6orf204. We then performed phenome-wide association studies (PheWAS) on variants in these five loci in 13,859 European Americans to search for diagnoses associated with these markers. PheWAS identified atrial fibrillation and cardiac arrhythmias as the most common associated diagnoses with SCN10A and SCN5A variants. SCN10A variants were also associated with subsequent development of atrial fibrillation and arrhythmia in the original 5,272 “heart-healthy” study population.
Conclusions
We conclude that DNA biobanks coupled to EMRs provide a platform not only for GWAS but may also allow broad interrogation of the longitudinal incidence of disease associated with genetic variants. The PheWAS approach implicated sodium channel variants modulating QRS duration in subjects without cardiac disease as predictors of subsequent arrhythmias.
doi:10.1161/CIRCULATIONAHA.112.000604
PMCID: PMC3713791  PMID: 23463857
cardiac conduction; QRS duration; atrial fibrillation; genome-wide association study; phenome-wide association study; electronic medical records
5.  Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data 
Nature biotechnology  2013;31(12):1102-1110.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 × 10−6 (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.
doi:10.1038/nbt.2749
PMCID: PMC3969265  PMID: 24270849
7.  Optimizing drug outcomes through pharmacogenetics: A case for preemptive genotyping 
Routine integration of genotype data into drug decision-making could improve patient safety, particularly if many relevant genetic variants can be assayed simultaneously before target drug prescribing. The frequency of pharmacogenetic prescribing opportunities and the potential adverse events (AE) mitigated are unknown. We examined the frequency with which 56 medications with known outcomes influenced by variant alleles were prescribed in a cohort of 52,942 medical home patients at Vanderbilt University Medical Center. Within a five-year window, we estimated that 64.8% (95% CI: 64.4%-65.2%) of individuals were exposed to at least one medication with an established pharmacogenetic association. Using previously published results for six medications with well-characterized, severe genetically-linked AEs, we estimated that 398 events (95% CI, 225 - 583) could have been prevented with an effective preemptive genotyping program. Our results suggest that multiplexed, preemptive genotyping may represent an efficient alternative approach to current single use (“reactive”) methods and may improve safety.
doi:10.1038/clpt.2012.66
PMCID: PMC3785311  PMID: 22739144
8.  Duration of Anti-Tuberculosis Therapy and Timing of Antiretroviral Therapy Initiation: Association with Mortality in HIV-Related Tuberculosis 
PLoS ONE  2013;8(9):e74057.
Background
Antiretroviral therapy (ART) decreases mortality risk in HIV-infected tuberculosis patients, but the effect of the duration of anti-tuberculosis therapy and timing of anti-tuberculosis therapy initiation in relation to ART initiation on mortality, is unclear.
Methods
We conducted a retrospective observational multi-center cohort study among HIV-infected persons concomitantly treated with Rifamycin-based anti-tuberculosis therapy and ART in Latin America. The study population included persons for whom 6 months of anti-tuberculosis therapy is recommended.
Results
Of 253 patients who met inclusion criteria, median CD4+ lymphocyte count at ART initiation was 64 cells/mm3, 171 (68%) received >180 days of anti-tuberculosis therapy, 168 (66%) initiated anti-tuberculosis therapy before ART, and 43 (17%) died. In a multivariate Cox proportional hazards model that adjusted for CD4+ lymphocytes and HIV-1 RNA, tuberculosis diagnosed after ART initiation was associated with an increased risk of death compared to tuberculosis diagnosis before ART initiation (HR 2.40; 95% CI 1.15, 5.02; P = 0.02). In a separate model among patients surviving >6 months after tuberculosis diagnosis, after adjusting for CD4+ lymphocytes, HIV-1 RNA, and timing of ART initiation relative to tuberculosis diagnosis, receipt of >6 months of anti-tuberculosis therapy was associated with a decreased risk of death (HR 0.23; 95% CI 0.08, 0.66; P=0.007).
Conclusions
The increased risk of death among persons diagnosed with tuberculosis after ART initiation highlights the importance of screening for tuberculosis before ART initiation. The decreased risk of death among persons receiving > 6 months of anti-tuberculosis therapy suggests that current anti-tuberculosis treatment duration guidelines should be re-evaluated.
doi:10.1371/journal.pone.0074057
PMCID: PMC3774609  PMID: 24066096
10.  An XML Model of an Enhanced Data Dictionary to Facilitate the Exchange of Clinical Research Data in International Studies 
The clinical research data sets exchanged in international epidemiology research often lack the elements needed to assess their suitability for use in multi-region meta-analyses. While the missing information is generally known to local investigators, it is not contained in the files exchanged between sites. Instead, such content must be solicited by the study coordinating center though a series of lengthy phone and electronic communications: an informal process whose reproducibility and accuracy decays over time. This report describes a set of supplemental information needed to assess whether clinical research data from diverse research sites are truly comparable, and what metadata (“data about the data”) should be preserved when a data set is archived for future use. We propose a structured Extensible Markup Language (XML) model that captures this information. The authors hope this model will be a first step towards preserving the metadata associated with clinical research data sets, thereby improving the quality of international data exchange, data archiving, and merged-data research using data collected in many different countries, languages and care settings.
PMCID: PMC3730279  PMID: 17911757
Programming Languages; Software Design; Knowledge Representation (Computer); Database Management Systems
11.  Designing a Public Square for Research Computing 
Science translational medicine  2012;4(149):149fs32.
doi:10.1126/scitranslmed.3004032
PMCID: PMC3725749  PMID: 22932220
12.  Genetic Variants That Confer Resistance to Malaria Are Associated with Red Blood Cell Traits in African-Americans: An Electronic Medical Record-based Genome-Wide Association Study 
G3: Genes|Genomes|Genetics  2013;3(7):1061-1068.
To identify novel genetic loci influencing interindividual variation in red blood cell (RBC) traits in African-Americans, we conducted a genome-wide association study (GWAS) in 2315 individuals, divided into discovery (n = 1904) and replication (n = 411) cohorts. The traits included hemoglobin concentration (HGB), hematocrit (HCT), RBC count, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). Patients were participants in the electronic MEdical Records and GEnomics (eMERGE) network and underwent genotyping of ~1.2 million single-nucleotide polymorphisms on the Illumina Human1M-Duo array. Association analyses were performed adjusting for age, sex, site, and population stratification. Three loci previously associated with resistance to malaria—HBB (11p15.4), HBA1/HBA2 (16p13.3), and G6PD (Xq28)—were associated (P ≤ 1 × 10−6) with RBC traits in the discovery cohort. The loci replicated in the replication cohort (P ≤ 0.02), and were significant at a genome-wide significance level (P < 5 × 10−8) in the combined cohort. The proportions of variance in RBC traits explained by significant variants at these loci were as follows: rs7120391 (near HBB) 1.3% of MCHC, rs9924561 (near HBA1/A2) 5.5% of MCV, 6.9% of MCH and 2.9% of MCHC, and rs1050828 (in G6PD) 2.4% of RBC count, 2.9% of MCV, and 1.4% of MCH, respectively. We were not able to replicate loci identified by a previous GWAS of RBC traits in a European ancestry cohort of similar sample size, suggesting that the genetic architecture of RBC traits differs by race. In conclusion, genetic variants that confer resistance to malaria are associated with RBC traits in African-Americans.
doi:10.1534/g3.113.006452
PMCID: PMC3704235  PMID: 23696099
red blood cell (RBC) traits; genome-wide association study; African-Americans; natural selection; informatics; electronic medical record
13.  American College of Medical Informatics Fellows and International Associates, 2008 
In 2008, 11 new fellows were elected to the American College of Medical Informatics, and were inducted into the College at a ceremony held in conjunction with the American Medical Informatics Association conference in Washington, DC on Nov 9, 2008. A brief synopsis of the background and accomplishments of each of the new fellows is provided here, in alphabetical order.
doi:10.1197/jamia.M3155
PMCID: PMC2732237
14.  Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project 
The promise of “personalized medicine” guided by an understanding of each individual’s genome has been fostered by increasingly powerful and economical methods to acquire clinically relevant features. We describe operational implementation of prospective genotyping linked to an advanced clinical decision support system to guide individualized healthcare in a large academic health center. This approach to personalized medicine includes patient and healthcare provider engagement, identifying relevant genetic variation for implementation, assay reliability, point-of-care decision support, and necessary institutional investments. In one year, approximately 3,000 patients, most scheduled for cardiac catheterization, were genotyped on a multiplexed platform including CYP2C19 variants that modulate response to the widely-used antiplatelet drug clopidogrel. These data are deposited into the Electronic Medical Record and point-of-care decision support is deployed when clopidogrel is prescribed for those with variant genotypes. The establishment of programs such as this is a first step toward implementing and evaluating strategies for personalized medicine.
doi:10.1038/clpt.2011.371
PMCID: PMC3581305  PMID: 22588608
Drug-Drug Interactions; Personalized Medicine; Pharmacogenetics; Translational Medicine; Adverse Drug Reactions
17.  Predicting warfarin dosage in European–Americans and African–Americans using DNA samples linked to an electronic health record 
Pharmacogenomics  2012;13(4):407-418.
Aim
Warfarin pharmacogenomic algorithms reduce dosing error, but perform poorly in non-European–Americans. Electronic health record (EHR) systems linked to biobanks may allow for pharmacogenomic analysis, but they have not yet been used for this purpose.
Patients & methods
We used BioVU, the Vanderbilt EHR-linked DNA repository, to identify European–Americans (n = 1022) and African–Americans (n = 145) on stable warfarin therapy and evaluated the effect of 15 pharmacogenetic variants on stable warfarin dose.
Results
Associations between variants in VKORC1, CYP2C9 and CYP4F2 with weekly dose were observed in European–Americans as well as additional variants in CYP2C9 and CALU in African–Americans. Compared with traditional 5 mg/day dosing, implementing the US FDA recommendations or the International Warfarin Pharmacogenomics Consortium (IWPC) algorithm reduced error in weekly dose in European–Americans (13.5–12.4 and 9.5 mg/week, respectively) but less so in African–Americans (15.2–15.0 and 13.8 mg/week, respectively). By further incorporating associated variants specific for European–Americans and African–Americans in an expanded algorithm, dose-prediction error reduced to 9.1 mg/week (95% CI: 8.4–9.6) in European–Americans and 12.4 mg/week (95% CI: 10.0–13.2) in African–Americans. The expanded algorithm explained 41 and 53% of dose variation in African–Americans and European–Americans, respectively, compared with 29 and 50%, respectively, for the IWPC algorithm. Implementing these predictions via dispensable pill regimens similarly reduced dosing error.
Conclusion
These results validate EHR-linked DNA biorepositories as real-world resources for pharmacogenomic validation and discovery.
doi:10.2217/pgs.11.164
PMCID: PMC3361510  PMID: 22329724
anticoagulants; bioinformatics; electronic health record; genes; pharmacogenomics; warfarin
18.  Genetic Loci Implicated in Erythroid Differentiation and Cell Cycle Regulation Are Associated With Red Blood Cell Traits 
Mayo Clinic Proceedings  2012;87(5):461-474.
Objective
To identify common genetic variants influencing red blood cell (RBC) traits.
Patients and Methods
We performed a genomewide association study from June 2008 through July 2011 of hemoglobin, hematocrit, RBC count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration in 12,486 patients of European ancestry from the electronic MEdical Records and Genomics (eMERGE) network. We developed an electronic medical record–based algorithm that included individuals who had RBC measurements obtained for clinical care and excluded values measured in the setting of hematopoietic disorders, comorbid conditions, or medications known to affect RBC production or a recent history of blood loss.
Results
We identified 4 new genetic loci and replicated 11 loci previously reported to be associated with one or more RBC traits in individuals of European ancestry. Notably, genes present in 3 of the 4 newly identified loci (THRB, PTPLAD1, CDT1) and in 6 of the 11 replicated loci (KLF1, ALDH8A1, CCND3, SPTA1, FBXO7, TFR2/EPO) are implicated in erythroid differentiation and regulation of cell cycle in hematopoietic stem cells.
Conclusion
Genes in the erythroid differentiation and cell cycle regulation pathways influence interindividual variation in RBC indices. Our results provide insights into the molecular basis underlying variation in RBC traits.
doi:10.1016/j.mayocp.2012.01.016
PMCID: PMC3538470  PMID: 22560525
eMERGE, electronic MEdical Records and GEnomics; EMMAX, mixed-model association-expedited; EMR, electronic medical record; eQTL, expression quantitative trait locus; GHC, Group Health Cooperative--University of Washington; GWAS, genomewide association study; HCT, hematocrit; HGB, hemoglobin; IBS, identity-by-state; LD, linkage disequilibrium; MC, Marshfield Clinic; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MIM, Mendelian Inheritance of Man; NU, Northwestern University; RBC, red blood cell; SNP, single-nucleotide polymorphism; VUMC, Vanderbilt University Medical Center
19.  Telehealth 
PMCID: PMC61201  PMID: 8988476
20.  StarBRITE: The Vanderbilt University Biomedical Research Integration, Translation and Education Portal 
Journal of biomedical informatics  2011;44(4):655-662.
StarBRITE is a one-stop, web-based research portal designed to meet the day-to-day needs of the Vanderbilt University and Meharry Medical College research community during the planning and conduct of research studies. StarBRITE serves as the main online location for research support addressing issues such as identification and location of resources, identification of experts, guidance for regulatory applications and approvals, regulatory assistance, funding requests, research data planning and collection, and serves as a central repository for educational offerings. To date, there have been more than 590,038 StarBRITE hits by more than 6582 cumulative users. We present here StarBRITE design objectives, details about technical infrastructure and system components, status report and activity metrics for the first 2.75-years of operation, and a report of lessons learned during organizing, launching and refining the portal.
doi:10.1016/j.jbi.2011.01.014
PMCID: PMC3118397  PMID: 21310264
Biomedical Informatics; Clinical Research; Translational Research; Scientific Portfolio Management; Researcher Portal; Research Services
21.  Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience 
Background
Systematic study of clinical phenotypes is important for a better understanding of the genetic basis of human diseases and more effective gene-based disease management. A key aspect in facilitating such studies requires standardized representation of the phenotype data using common data elements (CDEs) and controlled biomedical vocabularies. In this study, the authors analyzed how a limited subset of phenotypic data is amenable to common definition and standardized collection, as well as how their adoption in large-scale epidemiological and genome-wide studies can significantly facilitate cross-study analysis.
Methods
The authors mapped phenotype data dictionaries from five different eMERGE (Electronic Medical Records and Genomics) Network sites studying multiple diseases such as peripheral arterial disease and type 2 diabetes. For mapping, standardized terminological and metadata repository resources, such as the caDSR (Cancer Data Standards Registry and Repository) and SNOMED CT (Systematized Nomenclature of Medicine), were used. The mapping process comprised both lexical (via searching for relevant pre-coordinated concepts and data elements) and semantic (via post-coordination) techniques. Where feasible, new data elements were curated to enhance the coverage during mapping. A web-based application was also developed to uniformly represent and query the mapped data elements from different eMERGE studies.
Results
Approximately 60% of the target data elements (95 out of 157) could be mapped using simple lexical analysis techniques on pre-coordinated terms and concepts before any additional curation of terminology and metadata resources was initiated by eMERGE investigators. After curation of 54 new caDSR CDEs and nine new NCI thesaurus concepts and using post-coordination, the authors were able to map the remaining 40% of data elements to caDSR and SNOMED CT. A web-based tool was also implemented to assist in semi-automatic mapping of data elements.
Conclusion
This study emphasizes the requirement for standardized representation of clinical research data using existing metadata and terminology resources and provides simple techniques and software for data element mapping using experiences from the eMERGE Network.
doi:10.1136/amiajnl-2010-000061
PMCID: PMC3128396  PMID: 21597104
Ritu and pupu and 12; informatics; ontologies; knowledge representations; controlled terminologies and vocabularies; machine learning; terminologies; metadata; mapping; harmonization; eMERGE Network
22.  Facilitating pharmacogenetic studies using electronic health records and natural-language processing: a case study of warfarin 
Objective
DNA biobanks linked to comprehensive electronic health records systems are potentially powerful resources for pharmacogenetic studies. This study sought to develop natural-language-processing algorithms to extract drug-dose information from clinical text, and to assess the capabilities of such tools to automate the data-extraction process for pharmacogenetic studies.
Materials and methods
A manually validated warfarin pharmacogenetic study identified a cohort of 1125 patients with a stable warfarin dose, in which 776 patients were managed by Coumadin Clinic physicians, and the remaining 349 patients were managed by their providers. The authors developed two algorithms to extract weekly warfarin doses from both data sets: a regular expression-based program for semistructured Coumadin Clinic notes; and an advanced weekly dose calculator based on an existing medication information extraction system (MedEx) for narrative providers' notes. The authors then conducted an association analysis between an automatically extracted stable weekly dose of warfarin and four genetic variants of VKORC1 and CYP2C9 genes. The performance of the weekly dose-extraction program was evaluated by comparing it with a gold standard containing manually curated weekly doses. Precision, recall, F-measure, and overall accuracy were reported. Associations between known variants in VKORC1 and CYP2C9 and warfarin stable weekly dose were performed with linear regression adjusted for age, gender, and body mass index.
Results
The authors' evaluation showed that the MedEx-based system could determine patients' warfarin weekly doses with 99.7% recall, 90.8% precision, and 93.8% accuracy. Using the automatically extracted weekly doses of warfarin, the authors successfully replicated the previous known associations between warfarin stable dose and genetic variants in VKORC1 and CYP2C9.
doi:10.1136/amiajnl-2011-000208
PMCID: PMC3128409  PMID: 21672908
Automated learning; knowledge representations; discovery; text and data-mining methods; other methods of information extraction; natural-language processing; NLP; warfarin; old epass; Genetics; translational research—application of biological knowledge to clinical care; improving the education and skills training of health professionals; linking the genotype and phenotype
23.  Measuring the Quality of Observational Study Data in an International HIV Research Network 
PLoS ONE  2012;7(4):e33908.
Observational studies of health conditions and outcomes often combine clinical care data from many sites without explicitly assessing the accuracy and completeness of these data. In order to improve the quality of data in an international multi-site observational cohort of HIV-infected patients, the authors conducted on-site, Good Clinical Practice-based audits of the clinical care datasets submitted by participating HIV clinics. Discrepancies between data submitted for research and data in the clinical records were categorized using the audit codes published by the European Organization for the Research and Treatment of Cancer. Five of seven sites had error rates >10% in key study variables, notably laboratory data, weight measurements, and antiretroviral medications. All sites had significant discrepancies in medication start and stop dates. Clinical care data, particularly antiretroviral regimens and associated dates, are prone to substantial error. Verifying data against source documents through audits will improve the quality of databases and research and can be a technique for retraining staff responsible for clinical data collection. The authors recommend that all participants in observational cohorts use data audits to assess and improve the quality of data and to guide future data collection and abstraction efforts at the point of care.
doi:10.1371/journal.pone.0033908
PMCID: PMC3320898  PMID: 22493676
24.  Are Medical Informatics and Nursing Informatics Distinct Disciplines? 
The 1999 debate of the American College of Medical Informatics focused on the proposition that medical informatics and nursing informatics are distinctive disciplines that require their own core curricula, training programs, and professional identities. Proponents of this position emphasized that informatics training, technology applications, and professional identities are closely tied to the activities of the health professionals they serve and that, as nursing and medicine differ, so do the corresponding efforts in information science and technology. Opponents of the proposition asserted that informatics is built on a re-usable and widely applicable set of methods that are common to all health science disciplines, and that “medical informatics” continues to be a useful name for a composite core discipline that should be studied by all students, regardless of their health profession orientation.
PMCID: PMC61434  PMID: 10833168
25.  Are Time- and Event-based Prospective Memory Comparably Affected in HIV Infection?† 
According to the multi-process theory of prospective memory (ProM), time-based tasks rely more heavily on strategic processes dependent on prefrontal systems than do event-based tasks. Given the prominent frontostriatal pathophysiology of HIV infection, one would expect HIV-infected individuals to demonstrate greater deficits in time-based versus event-based ProM. However, the two prior studies examining this question have produced variable results. We evaluated this hypothesis in 143 individuals with HIV infection and 43 demographically similar seronegative adults (HIV−) who completed the research version of the Memory for Intentions Screening Test, which yields parallel subscales of time- and event-based ProM. Results showed main effects of HIV serostatus and cue type, but no interaction between serostatus and cue. Planned pair-wise comparisons showed a significant effect of HIV on time-based ProM and a trend-level effect on event-based ProM that was driven primarily by the subset of participants with HIV-associated neurocognitive disorders. Nevertheless, time-based ProM was more strongly correlated with measures of executive functions, attention/working memory, and verbal fluency in HIV-infected persons. Although HIV-associated deficits in time- and event-based ProM appear to be of comparable severity, the cognitive architecture of time-based ProM may be more strongly influenced by strategic monitoring and retrieval processes.
doi:10.1093/arclin/acr020
PMCID: PMC3081684  PMID: 21459901
AIDS dementia complex; Episodic memory; Executive functions; Neuropsychological assessment

Results 1-25 (41)