PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
author:("Li, longling")
1.  A Genome- and Phenome-Wide Association Study to Identify Genetic Variants Influencing Platelet Count and Volume and their Pleiotropic Effects 
Human genetics  2013;133(1):10.1007/s00439-013-1355-7.
Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways. We conducted an electronic medical record (EMR)-based study to identify common variants that influence inter-individual variation in the number of circulating platelets (PLT) and mean platelet volume (MPV), by performing a genome-wide association study (GWAS). We characterized association of variants influencing MPV and PLT using functional, pathway and disease enrichment analysis assess pleiotropic effects of such variants by performing a phenome-wide association study (PheWAS) with a wide range of EMR-derived phenotypes. A total of 13,582 participants in the electronic MEdical Records and GEnomic (eMERGE) network had data for PLT and 6,291 participants had data for MPV. We identified 5 chromosomal regions associated with PLT and 8 associated with MPV at genome-wide significance (P<5E-8). In addition, we replicated 20 SNPs (out of 56 SNPs (α: 0.05/56=9E-4)) influencing PLT and 22 SNPs (out of 29 SNPs (α: 0.05/29=2E-3)) influencing MPV in a meta-analysis of GWAS of PLT and MPV. While our GWAS did not reveal any novel associations, our functional analyses revealed that genes in these regions influence thrombopoiesis and encode kinases, membrane proteins, proteins involved in cellular trafficking, transcription factors, proteasome complex subunits, proteins of signal transduction pathways, proteins involved in megakaryocyte development and platelet production and hemostasis. PheWAS using a single-SNP Bonferroni correction for 1368 diagnoses (0.05/1368=3.6E-5) revealed that several variants in these genes have pleiotropic associations with myocardial infarction, autoimmune and hematologic disorders. We conclude that multiple genetic loci influence interindividual variation in platelet traits and also have significant pleiotropic effects; the related genes are in multiple functional pathways including those relevant to thrombopoiesis.
doi:10.1007/s00439-013-1355-7
PMCID: PMC3880605  PMID: 24026423
2.  Imputation and quality control steps for combining multiple genome-wide datasets 
Frontiers in Genetics  2014;5:370.
The electronic MEdical Records and GEnomics (eMERGE) network brings together DNA biobanks linked to electronic health records (EHRs) from multiple institutions. Approximately 51,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes), and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2) were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR.
doi:10.3389/fgene.2014.00370
PMCID: PMC4263197  PMID: 25566314
imputation; genome-wide association; eMERGE; electronic health records
3.  Genetic Variants Associated with Serum Thyroid Stimulating Hormone (TSH) Levels in European Americans and African Americans from the eMERGE Network 
PLoS ONE  2014;9(12):e111301.
Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10−17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10−6, β = −0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = −0.09), VEGFA (rs11755845 p = 0.01, β = −0.13), and NFIA (rs334699 p = 1.50×10−3, β = −0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic studies in more diverse populations.
doi:10.1371/journal.pone.0111301
PMCID: PMC4249871  PMID: 25436638
4.  iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus 
BMC Genomics  2014;15(1):839.
Background
Proteomics and bioinformatics may help us better understand the biological adaptations occurring during bovine mastitis. This systems approach also could help identify biomarkers for monitoring clinical and subclinical mastitis. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to screen potential proteins associated with mastitis at late infectious stage.
Results
Healthy and mastitic cows’ mammary gland tissues were analyzed using iTRAQ combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Bioinformatics analyses of differentially expressed proteins were performed by means of Gene Ontology, metabolic pathways, transcriptional regulation networks using Blast2GO software, the Dynamic Impact Approach and Ingenuity Pathway Analysis. At a false discovery rate of 5%, a total of 768 proteins were identified from 6,499 peptides, which were matched with 15,879 spectra. Compared with healthy mammary gland tissue, 36 proteins were significantly up-regulated (>1.5-fold) while 19 were significantly down-regulated (<0.67-fold) in response to mastitis due to natural infections with Staphylococci aureus. Up-regulation of collagen, type I, alpha 1 (COL1A1) and inter-alpha (Globulin) inhibitor H4 (ITIH4) in the mastitis-infected tissue was confirmed by Western blotting and Immunohistochemistry.
Conclusion
This paper is the first to show the protein expression in the late response to a mastitic pathogen, thus, revealing mechanisms associated with host tissue damage. The bioinformatics analyses highlighted the effects of mastitis on proteins such as collagen, fibrinogen, fibronectin, casein alpha and heparan sulfate proteoglycan 2. Our findings provide additional clues for further studies of candidate genes for mastitis susceptibility. The up-regulated expression of COL1A1 and ITIH4 in the mastitic mammary gland may be associated with tissue damage and repair during late stages of infection.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-839) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-839
PMCID: PMC4198675  PMID: 25273983
iTRAQ; Proteomics; COL1A1; ITIH4; Dairy cow; Mastitis
5.  Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network 
Background
Genetic studies require precise phenotype definitions, but electronic medical record (EMR) phenotype data are recorded inconsistently and in a variety of formats.
Objective
To present lessons learned about validation of EMR-based phenotypes from the Electronic Medical Records and Genomics (eMERGE) studies.
Materials and methods
The eMERGE network created and validated 13 EMR-derived phenotype algorithms. Network sites are Group Health, Marshfield Clinic, Mayo Clinic, Northwestern University, and Vanderbilt University.
Results
By validating EMR-derived phenotypes we learned that: (1) multisite validation improves phenotype algorithm accuracy; (2) targets for validation should be carefully considered and defined; (3) specifying time frames for review of variables eases validation time and improves accuracy; (4) using repeated measures requires defining the relevant time period and specifying the most meaningful value to be studied; (5) patient movement in and out of the health plan (transience) can result in incomplete or fragmented data; (6) the review scope should be defined carefully; (7) particular care is required in combining EMR and research data; (8) medication data can be assessed using claims, medications dispensed, or medications prescribed; (9) algorithm development and validation work best as an iterative process; and (10) validation by content experts or structured chart review can provide accurate results.
Conclusions
Despite the diverse structure of the five EMRs of the eMERGE sites, we developed, validated, and successfully deployed 13 electronic phenotype algorithms. Validation is a worthwhile process that not only measures phenotype performance but also strengthens phenotype algorithm definitions and enhances their inter-institutional sharing.
doi:10.1136/amiajnl-2012-000896
PMCID: PMC3715338  PMID: 23531748
electronic medical record; electronic health record; genomics; phenotype; validation studies
6.  Genetic variation associated with circulating monocyte count in the eMERGE Network 
Human Molecular Genetics  2013;22(10):2119-2127.
With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(−16), β = −0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(−7), β = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(−16), β = −0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(−7), β = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(−17), β = −0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count.
doi:10.1093/hmg/ddt010
PMCID: PMC3633369  PMID: 23314186
7.  Genome- and Phenome-Wide Analysis of Cardiac Conduction Identifies Markers of Arrhythmia Risk 
Circulation  2013;127(13):1377-1385.
Background
Electrocardiographic QRS duration, a measure of cardiac intraventricular conduction, varies ~2-fold in individuals without cardiac disease. Slow conduction may promote reentrant arrhythmias.
Methods and Results
We performed a genome-wide association study (GWAS) to identify genomic markers of QRS duration in 5,272 individuals without cardiac disease selected from electronic medical record (EMR) algorithms at five sites in the Electronic Medical Records and Genomics (eMERGE) network. The most significant loci were evaluated within the CHARGE consortium QRS GWAS meta-analysis. Twenty-three single nucleotide polymorphisms in 5 loci, previously described by CHARGE, were replicated in the eMERGE samples; 18 SNPs were in the chromosome 3 SCN5A and SCN10A loci, where the most significant SNPs were rs1805126 in SCN5A with p=1.2×10−8 (eMERGE) and p=2.5×10−20 (CHARGE) and rs6795970 in SCN10A with p=6×10−6 (eMERGE) and p=5×10−27 (CHARGE). The other loci were in NFIA, near CDKN1A, and near C6orf204. We then performed phenome-wide association studies (PheWAS) on variants in these five loci in 13,859 European Americans to search for diagnoses associated with these markers. PheWAS identified atrial fibrillation and cardiac arrhythmias as the most common associated diagnoses with SCN10A and SCN5A variants. SCN10A variants were also associated with subsequent development of atrial fibrillation and arrhythmia in the original 5,272 “heart-healthy” study population.
Conclusions
We conclude that DNA biobanks coupled to EMRs provide a platform not only for GWAS but may also allow broad interrogation of the longitudinal incidence of disease associated with genetic variants. The PheWAS approach implicated sodium channel variants modulating QRS duration in subjects without cardiac disease as predictors of subsequent arrhythmias.
doi:10.1161/CIRCULATIONAHA.112.000604
PMCID: PMC3713791  PMID: 23463857
cardiac conduction; QRS duration; atrial fibrillation; genome-wide association study; phenome-wide association study; electronic medical records
8.  Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data 
Nature biotechnology  2013;31(12):1102-1110.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 × 10−6 (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.
doi:10.1038/nbt.2749
PMCID: PMC3969265  PMID: 24270849
9.  Admixture Mapping and Subsequent Fine-Mapping Suggests a Biologically Relevant and Novel Association on Chromosome 11 for Type 2 Diabetes in African Americans 
PLoS ONE  2014;9(3):e86931.
Type 2 diabetes (T2D) is a complex metabolic disease that disproportionately affects African Americans. Genome-wide association studies (GWAS) have identified several loci that contribute to T2D in European Americans, but few studies have been performed in admixed populations. We first performed a GWAS of 1,563 African Americans from the Vanderbilt Genome-Electronic Records Project and Northwestern University NUgene Project as part of the electronic Medical Records and Genomics (eMERGE) network. We successfully replicate an association in TCF7L2, previously identified by GWAS in this African American dataset. We were unable to identify novel associations at p<5.0×10−8 by GWAS. Using admixture mapping as an alternative method for discovery, we performed a genome-wide admixture scan that suggests multiple candidate genes associated with T2D. One finding, TCIRG1, is a T-cell immune regulator expressed in the pancreas and liver that has not been previously implicated for T2D. We performed subsequent fine-mapping to further assess the association between TCIRG1 and T2D in >5,000 African Americans. We identified 13 independent associations between TCIRG1, CHKA, and ALDH3B1 genes on chromosome 11 and T2D. Our results suggest a novel region on chromosome 11 identified by admixture mapping is associated with T2D in African Americans.
doi:10.1371/journal.pone.0086931
PMCID: PMC3940426  PMID: 24595071
10.  European ancestry and resting metabolic rate in older African Americans 
Background/Objectives
Resting metabolic rate (RMR) contributes 60–80% of total energy expenditure and is consistently lower in populations of African descent compared with populations of European populations. Determination of European ancestry (EA) through SNP analysis would provide an initial step for identifying genetic associations that contribute to low RMR. We sought to evaluate the association between RMR and EA in African Americans.
Subjects/Methods
RMR was measured by indirect calorimetry in 141 African American men and women (aged 74.7 ± 3.0 years) enrolled in a substudy of the Health, Aging and Body Composition Study. Ancestry informative markers were used to estimate individual percent EA. Multivariate regression was used to assess the association between RMR and EA after adjustments for soft tissue fat-free mass (STFFM), fat mass, age, study site, physical activity level and sex.
Results
Mean EA was 23.8 ± 16% (range: 0.1% to 70.7%) and there were no differences by sex. Following adjustments, each percent EA was associated with a 1.6 kcal/day (95% Confidence interval: 0.42, 2.7 kcal/day) higher RMR (p = 0.008). This equates to a 160 kcal/day lower RMR in a population of completely African ancestry with one of completely European ancestry. Additional adjustment for trunk STFFM that partially accounts for high-metabolic rate organs did not affect this association.
Conclusions
European ancestry in African Americans is strongly associated with higher RMR. The data suggest that population differences in RMR may be due to genetic variants.
doi:10.1038/ejcn.2011.22
PMCID: PMC3915864  PMID: 21468093
Admixture; energy metabolism; body composition; genetic mapping
11.  Electronic medical records and genomics (eMERGE) network exploration in cataract: Several new potential susceptibility loci 
Molecular Vision  2014;20:1281-1295.
Purpose
Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS).
Methods
In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis.
Results
We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10−5 are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts.
Conclusions
This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies.
PMCID: PMC4168835  PMID: 25352737
12.  EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children 
Frontiers in Genetics  2013;4:268.
Common variations at the loci harboring the fat mass and obesity gene (FTO), MC4R, and TMEM18 are consistently reported as being associated with obesity and body mass index (BMI) especially in adult population. In order to confirm this effect in pediatric population five European ancestry cohorts from pediatric eMERGE-II network (CCHMC-BCH) were evaluated.
Method: Data on 5049 samples of European ancestry were obtained from the Electronic Medical Records (EMRs) of two large academic centers in five different genotyped cohorts. For all available samples, gender, age, height, and weight were collected and BMI was calculated. To account for age and sex differences in BMI, BMI z-scores were generated using 2000 Centers of Disease Control and Prevention (CDC) growth charts. A Genome-wide association study (GWAS) was performed with BMI z-score. After removing missing data and outliers based on principal components (PC) analyses, 2860 samples were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and BMI was tested using linear regression adjusting for age, gender, and PC by cohort. The effects of SNPs were modeled assuming additive, recessive, and dominant effects of the minor allele. Meta-analysis was conducted using a weighted z-score approach.
Results: The mean age of subjects was 9.8 years (range 2–19). The proportion of male subjects was 56%. In these cohorts, 14% of samples had a BMI ≥95 and 28 ≥ 85%. Meta analyses produced a signal at 16q12 genomic region with the best result of p = 1.43 × 10-7 [p(rec) = 7.34 × 10-8) for the SNP rs8050136 at the first intron of FTO gene (z = 5.26) and with no heterogeneity between cohorts (p = 0.77). Under a recessive model, another published SNP at this locus, rs1421085, generates the best result [z = 5.782, p(rec) = 8.21 × 10-9]. Imputation in this region using dense 1000-Genome and Hapmap CEU samples revealed 71 SNPs with p < 10-6, all at the first intron of FTO locus. When hetero-geneity was permitted between cohorts, signals were also obtained in other previously identified loci, including MC4R (rs12964056, p = 6.87 × 10-7, z = -4.98), cholecystokinin CCK (rs8192472, p = 1.33 × 10-6, z = -4.85), Interleukin 15 (rs2099884, p = 1.27 × 10-5, z = 4.34), low density lipoprotein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013, z = -3.81)] and near transmembrane protein 18 (TMEM18) (rs7561317, p = 0.001, z = -3.17). We also detected a novel locus at chromosome 3 at COL6A5 [best SNP = rs1542829, minor allele frequency (MAF) of 5% p = 4.35 × 10-9, z = 5.89].
Conclusion: An EMR linked cohort study demonstrates that the BMI-Z measurements can be successfully extracted and linked to genomic data with meaningful confirmatory results. We verified the high prevalence of childhood rate of overweight and obesity in our cohort (28%). In addition, our data indicate that genetic variants in the first intron of FTO, a known adult genetic risk factor for BMI, are also robustly associated with BMI in pediatric population.
doi:10.3389/fgene.2013.00268
PMCID: PMC3847941  PMID: 24348519
BMI; obesity; polymorphism; GWAS
13.  The Electronic Medical Records and Genomics (eMERGE) Network: Past, Present and Future 
The Electronic Medical Records and Genomics (eMERGE) Network is a National Human Genome Research Institute (NHGRI)-funded consortium engaged in the development of methods and best-practices for utilizing the Electronic Medical Record (EMR) as a tool for genomic research. Now in its sixth year, its second funding cycle and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from EMRs can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and healthcare informatics, particularly electronic phenotyping, genome-wide association studies, genomic medicine implementation and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here we describe the evolution, accomplishments, opportunities and challenges of the network since its inception as a five-group consortium focused on genotype-phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting towards implementation of genomic medicine.
doi:10.1038/gim.2013.72
PMCID: PMC3795928  PMID: 23743551
electronic medical records; personalized medicine; genome-wide association studies; genetics and genomics; collaborative research
14.  High Density GWAS for LDL Cholesterol in African Americans Using Electronic Medical Records Reveals a Strong Protective Variant in APOE 
Only one LDL-C GWAS has been reported in African Americans. We performed a GWAS of LDL-C in African Americans using data extracted from electronic medical records (EMR) in the eMERGE network. African Americans were genotyped on the Illumina 1M chip. All LDL-C measurements, prescriptions, and diagnoses of concomitant disease were extracted from EMR. We created two analytic datasets; one dataset having median LDL-C calculated after the exclusion of some lab values based on co-morbidities and medication (n = 618) and another dataset having median LDL-C calculated without any exclusions (n = 1249). Rs7412 in APOE was strongly associated with LDL-C at levels of GWAS significance in both datasets (p < 5 X 10−8). In the dataset with exclusions, a decrease of 20.0 mg/dl per minor allele was observed. The effect size was attenuated (12.3 mg/dl) in the dataset without any lab values excluded. Although other signals in APOE have been detected in previous GWAS, this large and important SNP association has not been well detected in large GWAS because rs7412 was not included on many genotyping arrays. Use of median LDL-C extracted from EMR after exclusions for medications and co-morbidities increased the percentage of trait variance explained by genetic variation.
doi:10.1111/j.1752-8062.2012.00446.x
PMCID: PMC3521536  PMID: 23067351
GWAS; LDL; electronic medical records
15.  Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium 
Science translational medicine  2011;3(79):79re1.
Clinical data in Electronic Medical Records (EMRs) is a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network or eMERGE investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73–98% and negative predictive values of 98–100%. A majority of EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
doi:10.1126/scitranslmed.3001807
PMCID: PMC3690272  PMID: 21508311
16.  Enhancing the Power of Genetic Association Studies through the Use of Silver Standard Cases Derived from Electronic Medical Records 
PLoS ONE  2013;8(6):e63481.
The feasibility of using imperfectly phenotyped “silver standard” samples identified from electronic medical record diagnoses is considered in genetic association studies when these samples might be combined with an existing set of samples phenotyped with a gold standard technique. An analytic expression is derived for the power of a chi-square test of independence using either research-quality case/control samples alone, or augmented with silver standard data. The subset of the parameter space where inclusion of silver standard samples increases statistical power is identified. A case study of dementia subjects identified from electronic medical records from the Electronic Medical Records and Genomics (eMERGE) network, combined with subjects from two studies specifically targeting dementia, verifies these results.
doi:10.1371/journal.pone.0063481
PMCID: PMC3677889  PMID: 23762230
17.  Pitfalls of Merging GWAS Data: Lessons Learned in the eMERGE Network and Quality Control Procedures to Maintain High Data Quality 
Genetic epidemiology  2011;35(8):887-898.
Genome-wide association studies (GWAS) are a useful approach in the study of the genetic components of complex phenotypes. Aside from large cohorts, GWAS have generally been limited to the study of one or a few diseases or traits. The emergence of biobanks linked to electronic medical records (EMRs) allows the efficient re-use of genetic data to yield meaningful genotype-phenotype associations for multiple phenotypes or traits. Phase I of the electronic MEdical Records and GEnomics (eMERGE-I) Network is a National Human Genome Research Institute (NHGRI)-supported consortium composed of five sites to perform various genetic association studies using DNA repositories and EMR systems. Each eMERGE site has developed EMR-based algorithms to comprise a core set of fourteen phenotypes for extraction of study samples from each site’s DNA repository. Each eMERGE site selected samples for a specific phenotype, and these samples were genotyped at either the Broad Institute or at the Center for Inherited Disease Research (CIDR) using the Illumina Infinium BeadChip technology. In all, approximately 17,000 samples from across the five sites were genotyped. A unified quality control (QC) pipeline was developed by the eMERGE Genomics Working Group and used to ensure thorough cleaning of the data. This process includes examination of sample quality, marker quality, and various batch effects. Upon completion of the genotyping and QC analyses for each site’s primary study, the eMERGE Coordinating Center merged the datasets from all five sites. This larger merged dataset re-entered the established eMERGE QC pipeline. Based on lessons learned during the process, additional analyses and QC checkpoints were added to the pipeline to ensure proper merging. Here we explore the challenges associated with combining datasets from different genotyping centers and describe the expansion to the eMERGE QC pipeline for merged datasets. These additional steps will be useful as the eMERGE project expands to include additional sites in eMERGE-II and also serve as a starting point for investigators merging multiple genotype data sets accessible through the National Center for Biotechnology Information (NCBI) in the database of Genotypes and Phenotypes (dbGaP). Our experience demonstrates that merging multiple datasets after additional QC can be an efficient use of genotype data despite new challenges that appear in the process.
doi:10.1002/gepi.20639
PMCID: PMC3592376  PMID: 22125226
quality control; genome-wide association (GWAS); eMERGE; dbGaP; merging datasets
18.  A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study 
PLoS Genetics  2013;9(1):e1003171.
Genetic variants in intron 1 of the fat mass– and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI–associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646–kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10−6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations.
Author Summary
Genetic variants within the fat mass– and obesity-associated (FTO) gene are associated with increased risk of obesity. To better understand which specific genetic variant(s) in this genetic region is associated with obesity risk, we attempt to genotype or impute all known genetic variants in the region and test for association with body mass index as a measurement of obesity in over 20,000 African Americans. We identified 29 potential candidate variants, of which one variant (rs1421085) is a particularly interesting candidate for future functional follow-up studies. Our example shows the powerful approach of studying a large African American population, substantially reducing the number of possible functional variants compared with European descent populations.
doi:10.1371/journal.pgen.1003171
PMCID: PMC3547789  PMID: 23341774
19.  Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience 
Background
Systematic study of clinical phenotypes is important for a better understanding of the genetic basis of human diseases and more effective gene-based disease management. A key aspect in facilitating such studies requires standardized representation of the phenotype data using common data elements (CDEs) and controlled biomedical vocabularies. In this study, the authors analyzed how a limited subset of phenotypic data is amenable to common definition and standardized collection, as well as how their adoption in large-scale epidemiological and genome-wide studies can significantly facilitate cross-study analysis.
Methods
The authors mapped phenotype data dictionaries from five different eMERGE (Electronic Medical Records and Genomics) Network sites studying multiple diseases such as peripheral arterial disease and type 2 diabetes. For mapping, standardized terminological and metadata repository resources, such as the caDSR (Cancer Data Standards Registry and Repository) and SNOMED CT (Systematized Nomenclature of Medicine), were used. The mapping process comprised both lexical (via searching for relevant pre-coordinated concepts and data elements) and semantic (via post-coordination) techniques. Where feasible, new data elements were curated to enhance the coverage during mapping. A web-based application was also developed to uniformly represent and query the mapped data elements from different eMERGE studies.
Results
Approximately 60% of the target data elements (95 out of 157) could be mapped using simple lexical analysis techniques on pre-coordinated terms and concepts before any additional curation of terminology and metadata resources was initiated by eMERGE investigators. After curation of 54 new caDSR CDEs and nine new NCI thesaurus concepts and using post-coordination, the authors were able to map the remaining 40% of data elements to caDSR and SNOMED CT. A web-based tool was also implemented to assist in semi-automatic mapping of data elements.
Conclusion
This study emphasizes the requirement for standardized representation of clinical research data using existing metadata and terminology resources and provides simple techniques and software for data element mapping using experiences from the eMERGE Network.
doi:10.1136/amiajnl-2010-000061
PMCID: PMC3128396  PMID: 21597104
Ritu and pupu and 12; informatics; ontologies; knowledge representations; controlled terminologies and vocabularies; machine learning; terminologies; metadata; mapping; harmonization; eMERGE Network
20.  Quality Control Procedures for Genome Wide Association Studies 
Genome-wide association studies (GWAS) are being conducted at an unprecedented rate in population-based cohorts and have increased our understanding of the pathophysiology of complex disease. The recent application of GWAS to clinic-based cohorts has also yielded genetic predictors of clinical outcomes. Regardless of context, the practical utility of this information will ultimately depend upon the quality of the original data. Quality control (QC) procedures for GWAS are computationally intensive, operationally challenging, and constantly evolving. With each new dataset, new realities are discovered about GWAS data and best practices continue to be developed. The Genomics Workgroup of the National Human Genome Research Institute (NHGRI) funded electronic Medical Records and Genomics (eMERGE) network has invested considerable effort in developing strategies for QC of these data. The lessons learned by this group will be valuable for other investigators dealing with large scale genomic datasets. Here we enumerate some of the challenges in QC of GWAS data and describe the approaches that the eMERGE network is using for quality assurance in GWAS data, thereby minimizing potential bias and error in GWAS results. In this protocol we discuss common issues associated with QC of GWAS data, including data file formats, software packages for data manipulation and analysis, sex chromosome anomalies, sample identity, sample relatedness, population substructure, batch effects, and marker quality. We propose best practices and discuss areas of ongoing and future research.
doi:10.1002/0471142905.hg0119s68
PMCID: PMC3066182  PMID: 21234875
21.  Telomere length and cognitive function in community-dwelling elders: Findings from the Health ABC Study 
Neurobiology of aging  2009;32(11):2055-2060.
Telomere shortening is a marker of cellular aging and has been associated with risk of Alzheimer’s disease. Few studies have determined if telomere length is associated with cognitive decline in non-demented elders. We prospectively studied 2,734 non-demented elders (mean age: 74 years). We measured cognition with the Modified Mini-Mental State Exam (3MS) and Digit Symbol Substitution Test (DSST) repeatedly over 7 years. Baseline telomere length was measured in blood leukocytes and classified by tertile as “short”, “medium”, or “long”. At baseline, longer telomere length was associated with better DSST score (36.4, 34.9 and 34.4 points for long, medium and short, p <0.01) but not for change in score. However, seven-year 3MS change scores were less among those with longer telomere length (−1.7 points vs. −2.5 and −2.9, p = 0.01). Findings were similar after multivariable adjustment for age, gender, race, education, assay batch, and baseline score. There was a borderline statistically significant interaction for telomere length and APOE e4 on 3MS change score (p=0.06). Thus, telomere length may serve as a biomarker for cognitive aging.
doi:10.1016/j.neurobiolaging.2009.12.006
PMCID: PMC2916948  PMID: 20031273
Cognitive Decline; Biomarker; Genetics; Telomeres; Epidemiology
22.  Role of Exonic Variation in Chemokine Receptor Genes on AIDS: CCRL2 F167Y Association with Pneumocystis Pneumonia 
PLoS Genetics  2011;7(10):e1002328.
Chromosome 3p21–22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected). Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP) (RH = 2.84, 95% CI 1.28–6.31) among four major AIDS–defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation.
Author Summary
Human chemokine receptors are cell surface proteins that may be utilized by HIV-1 for entry into host cells. DNA variation in the HIV-1 major coreceptor CCR5 affects HIV-1 infection and progression. This study comprehensively assesses the role of genetic variation of multiple chemokine receptor genes clustered in the chromosome 3p21 and 3p22 on HIV-1 disease outcomes in HIV-1 natural history cohorts. The multivariate survival analyses identified functional variants that altered disease progression rate in CCRL2, CCR3, and CCR8. CCRL2-F167Y affects the rate to AIDS development through a specific protection against pneumocystis pneumonia (PCP), a common AIDS–defining condition. Our study identified this atypical chemokine receptor CCRL2 as a key factor involved in PCP, possibly through inducing inflammation in the lung.
doi:10.1371/journal.pgen.1002328
PMCID: PMC3203199  PMID: 22046140
23.  Genetic Ancestry in Lung-Function Predictions 
The New England journal of medicine  2010;363(4):321-330.
BACKGROUND
Self-identified race or ethnic group is used to determine normal reference standards in the prediction of pulmonary function. We conducted a study to determine whether the genetically determined percentage of African ancestry is associated with lung function and whether its use could improve predictions of lung function among persons who identified themselves as African American.
METHODS
We assessed the ancestry of 777 participants self-identified as African American in the Coronary Artery Risk Development in Young Adults (CARDIA) study and evaluated the relation between pulmonary function and ancestry by means of linear regression. We performed similar analyses of data for two independent cohorts of subjects identifying themselves as African American: 813 participants in the Health, Aging, and Body Composition (HABC) study and 579 participants in the Cardiovascular Health Study (CHS). We compared the fit of two types of models to lung-function measurements: models based on the covariates used in standard prediction equations and models incorporating ancestry. We also evaluated the effect of the ancestry-based models on the classification of disease severity in two asthma-study populations.
RESULTS
African ancestry was inversely related to forced expiratory volume in 1 second (FEV1) and forced vital capacity in the CARDIA cohort. These relations were also seen in the HABC and CHS cohorts. In predicting lung function, the ancestry-based model fit the data better than standard models. Ancestry-based models resulted in the reclassification of asthma severity (based on the percentage of the predicted FEV1) in 4 to 5% of participants.
CONCLUSIONS
Current predictive equations, which rely on self-identified race alone, may misestimate lung function among subjects who identify themselves as African American. Incorporating ancestry into normative equations may improve lung-function estimates and more accurately categorize disease severity. (Funded by the National Institutes of Health and others.)
doi:10.1056/NEJMoa0907897
PMCID: PMC2922981  PMID: 20647190
24.  Renin Angiotensin System Gene Polymorphisms Modify Angiotensin Converting Enzyme (ACE) Inhibitors' Effect on Cognitive Function: The Health, Aging and Body Composition Study 
Objectives
We investigated the impact of polymorphisms in key renin angiotensin system genes on the association between angiotensin converting enzyme inhibitors (ACEINH) exposure and global and executive cognitive function in the Health, Aging and Body Composition study.
Design
Cohort study.
Setting
Community-based
Participants
3,075 participants: mean age: 73.6 years, 58% Caucasian, 52% women, 15% on ACEINH, 8 years of follow-up.
Measurements
The phenotypes were longitudinal change in Executive Clock Draw test-1 (CLOX1), the Digit Symbol Substitution test, and the Modified Mini Mental Status Examination. The genetic polymorphisms included the angiotensin converting enzyme insertion deletion (ACEID) in the angiotensin converting enzyme gene and the M235T and 6AG polymorphisms in the angiotensinogen gene (AGT).
Results
The 6AG and M235T polymorphisms in AGT had significant interaction with ACEINH exposure on the longitudinal change in CLOX1 scores in Caucasian participants (p=0.01 for both polymorphisms) independent of blood pressure levels. Specifically, ACEINH exposure was protective against CLOX1 score decline in carriers of the AA genotype of the 6AG and the CC genotype of the M235T (p-value for the ACEINH vs non-ACEINH groups =0.01 for 6AG and 0.005 for M235T) but not the other genotypes. These associations were not significant with other cognitive tests, with ACEID, or in African Americans.
Conclusion
ACEINH may provide a protective effect on executive function in Caucasians with AGT polymorphisms known to be associated with increased renin angiotensin system activity. If confirmed in a pharmacogenetic trial, ACEINH may have additional cognitive protection in a select group of elderly individuals.
doi:10.1111/j.1532-5415.2010.02860.x
PMCID: PMC2926814  PMID: 20722844
hypertension; cognitive function; angiotensin converting enzyme inhibitors; angiotensinogen gene
25.  The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies 
BMC Medical Genomics  2011;4:13.
Introduction
The eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors.
Organization
The five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel.
Current progress
The primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site.
Future activities
Plans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care.
Summary
By combining advanced clinical informatics, genome science, and community consultation, eMERGE represents a first step in the development of data-driven approaches to incorporate genomic information into routine healthcare delivery.
doi:10.1186/1755-8794-4-13
PMCID: PMC3038887  PMID: 21269473

Results 1-25 (41)