PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Nogo Receptor 1 (RTN4R) as a Candidate Gene for Schizophrenia: Analysis Using Human and Mouse Genetic Approaches 
PLoS ONE  2007;2(11):e1234.
Background
NOGO Receptor 1 (RTN4R) regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene.
Methodology/Principal Findings
We evaluate evidence for genetic association between common RTN4R polymorphisms and schizophrenia in a large family sample of Afrikaner origin and screen the exonic sequence of RTN4R for rare variants in an independent sample from the U.S. We also employ animal model studies to assay a panel of schizophrenia-related behavioral tasks in an Rtn4r-deficient mouse model. We found weak sex-specific evidence for association between common RTN4R polymorphisms and schizophrenia in the Afrikaner patients. In the U.S. sample, we identified two novel non-conservative RTN4R coding variants in two patients with schizophrenia that were absent in 600 control chromosomes. In our complementary mouse model studies, we identified a haploinsufficient effect of Rtn4r on locomotor activity, but normal performance in schizophrenia-related behavioral tasks. We also provide evidence that Rtn4r deficiency can modulate the long-term behavioral effects of transient postnatal N-methyl-D-aspartate (NMDA) receptor hypofunction.
Conclusions
Our results do not support a major role of RTN4R in susceptibility to schizophrenia or the cognitive and behavioral deficits observed in individuals with 22q11 microdeletions. However, they suggest that RTN4R may modulate the genetic risk or clinical expression of schizophrenia in a subset of patients and identify additional studies that will be necessary to clarify the role of RTN4R in psychiatric phenotypes. In addition, our results raise interesting issues about evaluating the significance of rare genetic variants in disease and their role in causation.
doi:10.1371/journal.pone.0001234
PMCID: PMC2077930  PMID: 18043741
2.  A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R 
BMC Medical Genetics  2004;5:10.
Background
Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes.
Case presentation
We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33). Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R.
Conclusions
The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate receptors maintain structural and functional plasticity of synapses. Neuropeptide Y and its receptors NPY1R and NPY5R play a role in hippocampal learning and memory. Glycine receptors are expressed in very early cortical development. Molecular cytogenetic studies and DNA sequence analysis in other patients with autism will be necessary to confirm that these genes are involved in autism.
doi:10.1186/1471-2350-5-10
PMCID: PMC411038  PMID: 15090072
3.  Simple Tests to Detect Errors in High-Throughput Genotype Data in the Molecular Laboratory 
With the advent of high-density DNA marker data sets for the mouse and other model systems, 100 or more genotypes are routinely generated from large groups of mice. Issues of the accuracy and reliability of the genotyping are extremely important but often not addressed until genetic analysis is conducted. Simple tests that rely on the robust predictions arising from Mendelian genetics can be made quickly in the molecular laboratory as the data are generated, and require only a spreadsheet program. In this report, genotype data from 392 mice tested at 96 marker sites were analyzed for errors that are typical when handling large volumes of data generated in a repetitive process. The testing consisted of: (1) repeating the genotyping of approximately 1% of the samples; (2) examining the deviation from the expected segregation ratio (1:2:1) on a marker-by-marker basis; and (3) testing the correlation of the genotype at one marker with that at neighboring genetic markers on a chromosome. These three steps allowed analysis at the level of the microtiter plate, where errors are most likely to occur. A set of 96 dinucleotide repeat markers that are polymorphic between the C57BL/6J and DBA/2J mouse strains and can be multiplexed is reported for use in other genotyping projects.
PMCID: PMC2279894  PMID: 12901607
Hardy–Weinberg equilibrium; inbred lines; C57; DBA; multiplex marker set

Results 1-3 (3)