Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity 
Developmental cell  2012;24(1):26-40.
Polarization of mammalian neurons with a specified axon requires precise regulation of microtubule and actin dynamics in the developing neurites. Here we show that mammalian partition defective 3 (mPar3), a key component of the Par polarity complex that regulates the polarization of many cell types including neurons, directly regulates microtubule stability and organization. The N-terminal portion of mPar3 exhibits strong microtubule binding, bundling and stabilization activity, which can be suppressed by its C-terminal portion via an intra-molecular interaction. Interestingly, the inter-molecular oligomerization of mPar3 is able to relieve the intra-molecular interaction and thereby promote microtubule bundling and stabilization. Furthermore, disruption of this microtubule regulatory activity of mPar3 impairs its function in axon specification. Together, these results demonstrate a role for mPar3 in directly regulating microtubule organization that is crucial for neuronal polarization.
PMCID: PMC3549028  PMID: 23273878
2.  Mitochondrial transfer from bone marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury 
Nature medicine  2012;18(5):759-765.
Bone marrow-derived stromal cells (BMSCs) protect against acute lung injury (ALI). To determine the role of BMSC mitochondria in the protection, we airway-instilled mice first with lipopolysaccharide (LPS), then with mouse BMSCs (mBMSCs). Live optical studies revealed that mBMSCs formed connexin 43 (Cx43)-containing gap junctional channels (GJCs) with the alveolar epithelium, releasing mitochondria-containing microvesicles that the epithelium engulfed. The presence of BMSC mitochondria in the epithelium was evident optically, as also by the presence of human mitochondrial DNA in mouse lungs in which we instilled human BMSCs (hBMSCs). The mitochondrial transfer increased alveolar ATP. LPS-induced ALI, indicated by alveolar leukocytosis and protein leak, inhibition of surfactant secretion and high mortality, was markedly abrogated by wild type mBMSCs, but not by mutant, GJC-incompetent mBMSCs, or by mBMSCs with dysfunctional mitochondria. This is the first evidence that BMSCs protect against ALI by restituting alveolar bioenergetics through Cx43-dependent alveolar attachment and mitochondrial transfer.
PMCID: PMC3727429  PMID: 22504485
3.  Estrogen Receptor-α variants increase risk of Alzheimer’s Disease in women with Down syndrome 
Genetic variants that affect estrogen activity may influence the risk of Alzheimer’s disease (AD). Two tightly linked polymorphisms (PvuII and XbaI) in the first intron of estrogen receptor 1 (ESR1), the gene for ER-α, have been reported to influence estrogen receptor expression and may influence the risk of AD.
We examined the relation of polymorphisms in ESR1 to the risk of AD in women with Down syndrome. The subjects (181 women with DS, 41–78 years of age) were followed at 14- to 18-month intervals. Information from cognitive assessments, caregiver interviews, medical record reviews and neurological examinations was used to classify dementia. Genomic DNA was genotyped for 5 single-nucleotide polymorphisms in the upstream region and the first exon/intron of the ESR1 gene. Their association with dementia risk was evaluated, adjusting for covariates.
Women with at least 1 copy of the C allele at rs2234693 (PvuII) and those homozygous for the C allele at rs2077647 had an almost 3-fold increase in the risk of AD, compared with women without the C allele. The increased risks were independent of the apolipoprotein E genotype.
These findings support a role for estrogen receptor activity in the development of AD in women with Down syndrome.
PMCID: PMC2430887  PMID: 18408366
Estrogen; Estrogen receptor-α; Down syndrome; Alzheimer’s disease
4.  TP73 allelic expression in human brain and allele frequencies in Alzheimer's disease 
BMC Medical Genetics  2004;5:14.
The p73 protein, a paralogue of the p53 tumor suppressor, is essential for normal development and survival of neurons. TP73 is therefore of interest as a candidate gene for Alzheimer's disease (AD) susceptibility. TP73 mRNA is transcribed from three promoters, termed P1 – P3, and there is evidence for an additional complexity in its regulation, namely, a variable allelic expression bias in some human tissues.
We utilized RT-PCR/RFLP and direct cDNA sequencing to measure allele-specific expression of TP73 mRNA, SNP genotyping to assess genetic associations with AD, and promoter-reporter assays to assess allele-specific TP73 promoter activity.
Using a coding-neutral BanI polymorphism in TP73 exon 5 as an allelic marker, we found a pronounced allelic expression bias in one adult brain hippocampus, while 3 other brains (two adult; one fetal) showed approximately equal expression from both alleles. In a tri-ethnic elderly population of African-Americans, Caribbean Hispanics and Caucasians, a G/A single nucleotide polymorphism (SNP) at -386 in the TP73 P3 promoter was weakly but significantly associated with AD (crude O.R. for AD given any -386G allele 1.7; C.I. 1.2–2.5; after adjusting for age and education O.R. 1.5; C.I. 1.1–2.3, N= 1191). The frequency of the -386G allele varied by ethnicity and was highest in African-Americans and lowest in Caucasians. No significant differences in basal P3 promoter activity were detected comparing -386G vs. -386A promoter-luciferase constructs in human SK-NSH-N neuroblastoma cells.
There is a reproducible allelic expression bias in mRNA expression from the TP73 gene in some, though not all, adult human brains, and inter-individual variation in regulatory sequences of the TP73 locus may affect susceptibility to AD. However, additional studies will be necessary to exclude genetic admixture as an alternative explanation for the observed associations.
PMCID: PMC420466  PMID: 15175114
5.  The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface 
BMC Genetics  2002;3:11.
The Tnfrh1 gene (gene symbol Tnfrsf23) is located near one end of a megabase-scale imprinted region on mouse distal chromosome 7, about 350 kb distant from the nearest known imprinting control element. Within 20 kb of Tnfrh1 is a related gene called Tnfrh2 (Tnfrsf22) These duplicated genes encode putative decoy receptors in the tumor necrosis factor (TNF) receptor family. Although other genes in this chromosomal region show conserved synteny with genes on human Chr11p15.5, there are no obvious human orthologues of Tnfrh1 or Tnfrh2.
We analyzed Tnfrh1 for evidence of parental imprinting, and characterized its tissue-specific expression. Tnfrh1 mRNA is detectable in multiple adult and fetal tissues, with highest expression in placenta, where in situ hybridization reveals a distinctive population of Tnfrh1-positive cells in maternal decidua, directly beneath the trophoblast giant cells. In offspring of interspecific mouse crosses, Tnfrh1 shows a consistent parent-of-origin-dependent allelic expression bias, with relative repression, but not silencing, of the paternal allele in several organs including fetal liver and adult spleen.
Genes preferentially expressed in the placenta are predicted to evolve rapidly, and Tnfrh1 appears to be an example of this phenomenon. In view of its strong expression in cells at the fetal-maternal boundary, Tnfrh1 warrants further study as a gene that might modulate immune or trophic interactions between the invasive placental trophoblast and the maternal decidua. The preferential expression of Tnfrh1 from the maternal allele indicates weak functional imprinting of this locus in some tissues.
PMCID: PMC117226  PMID: 12102730

Results 1-5 (5)