PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Current practices and guidelines for clinical next-generation sequencing oncology testing 
Cancer Biology & Medicine  2016;13(1):3-11.
Next-generation sequencing (NGS) has been rapidly integrated into molecular pathology, dramatically increasing the breadth genomic of information available to oncologists and their patients. This review will explore the ways in which this new technology is currently applied to bolster care for patients with solid tumors and hematological malignancies, focusing on practices and guidelines for assessing the technical validity and clinical utility of DNA variants identified during clinical NGS oncology testing.
doi:10.28092/j.issn.2095-3941.2016.0004
PMCID: PMC4850126  PMID: 27144058
Cancer genomics; next-generation sequencing; molecular diagnostics
2.  De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa 
PLoS ONE  2016;11(3):e0150944.
Background
Retinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.
Methods
Variant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.
Results and Conclusions
A total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon.
doi:10.1371/journal.pone.0150944
PMCID: PMC4786330  PMID: 26964041
3.  Analysis of the ABCA4 genomic locus in Stargardt disease 
Human Molecular Genetics  2014;23(25):6797-6806.
Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of ABCA4 in STGD patients identifies compound heterozygous or homozygous disease-associated alleles in 65–70% of patients and only one mutation in 15–20% of patients. This study was designed to find the missing disease-causing ABCA4 variation by a combination of next-generation sequencing (NGS), array-Comparative Genome Hybridization (aCGH) screening, familial segregation and in silico analyses. The entire 140 kb ABCA4 genomic locus was sequenced in 114 STGD patients with one known ABCA4 exonic mutation revealing, on average, 200 intronic variants per sample. Filtering of these data resulted in 141 candidates for new mutations. Two variants were detected in four samples, two in three samples, and 20 variants in two samples, the remaining 117 new variants were detected only once. Multimodal analysis suggested 12 new likely pathogenic intronic ABCA4 variants, some of which were specific to (isolated) ethnic groups. No copy number variation (large deletions and insertions) was detected in any patient suggesting that it is a very rare event in the ABCA4 locus. Many variants were excluded since they were not conserved in non-human primates, were frequent in African populations and, therefore, represented ancestral, and not disease-associated, variants. The sequence variability in the ABCA4 locus is extensive and the non-coding sequences do not harbor frequent mutations in STGD patients of European-American descent. Defining disease-associated alleles in the ABCA4 locus requires exceptionally well characterized large cohorts and extensive analyses by a combination of various approaches.
doi:10.1093/hmg/ddu396
PMCID: PMC4245042  PMID: 25082829
4.  Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia 
JAMA neurology  2014;71(10):1237-1246.
IMPORTANCE
Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established.
OBJECTIVE
To investigate the contribution of genetic disease in a population of patients with predominantly adult- and sporadic-onset cerebellar ataxia.
DESIGN, SETTING, AND PARTICIPANTS
We examined a consecutive series of 76 patients presenting to a tertiary referral center for evaluation of chronic progressive cerebellar ataxia.
MAIN OUTCOMES AND MEASURES
Next-generation exome sequencing coupled with comprehensive bioinformatic analysis, phenotypic analysis, and clinical correlation.
RESULTS
We identified clinically relevant genetic information in more than 60% of patients studied (n = 46), including diagnostic pathogenic gene variants in 21% (n = 16), a notable yield given the diverse genetics and clinical heterogeneity of the cerebellar ataxias.
CONCLUSIONS AND RELEVANCE
This study demonstrated that clinical exome sequencing in patients with adult-onset and sporadic presentations of ataxia is a high-yield test, providing a definitive diagnosis in more than one-fifth of patients and suggesting a potential diagnosis in more than one-third to guide additional phenotyping and diagnostic evaluation. Therefore, clinical exome sequencing is an appropriate consideration in the routine genetic evaluation of all patients presenting with chronic progressive cerebellar ataxia.
doi:10.1001/jamaneurol.2014.1944
PMCID: PMC4324730  PMID: 25133958
5.  Whole exome sequencing detects homozygosity for ABCA4 p.Arg602Trp missense mutation in a pediatric patient with rapidly progressive retinal dystrophy 
BMC Medical Genetics  2014;15:11.
Background
A pediatric patient presented with rapidly progressive vision loss, nyctalopia and retinal dystrophy. This is the first report of homozygosity for the p.Arg602Trp mutation in the ABCA4 gene. The child became legally blind within a period of 2 years.
Case presentation
An eight year-old Hispanic female presented with bilateral decreased vision following a febrile gastrointestinal illness with nausea and vomiting. Extensive workup involved pediatric infectious disease and rheumatology consultations.
Initial visual acuity was 20/60 at distance and 20/30 at near in both eyes. Rapidly progressive vision loss occurred during a 2-year period resulting in visual acuities of 20/200 at distance in both eyes. Fundus exam disclosed attenuated vessels and multiple subretinal blister-like elevations. Optical coherence tomography showed far more lesions than were clinically evident with different levels of elevation. Autofluorescence imagery showed dramatic and widespread geographic areas of atrophy. The deposits that appeared drusen-like on clinical exam were hyperfluorescent, consistent with lipofuscin deposits containing A2e (N-retinylidene-N-retinylethanolamine) indicative of RPE cell dysfunction. Electroretinography was consistent with cone dystrophy, with relative preservation of rod function. Blood analysis and rheumatology evaluation found no evidence of a diffuse post-infectious/inflammatory process. The unique and rapid progression of her subretinal blister-like lesions was documented by fluorescein angiography, optical coherence tomography, autofluorescence imagery, and fundus photography. Family pedigree history disclosed consanguinity, her parents being first cousins. DNA analysis by whole exomic sequencing revealed homozygosity of p.Arg602Trp in the ABCA4 gene.
Conclusion
The pediatric patient presented with a striking clinical appearance and dramatic rate of progression that was clinically more characteristic of an infectious or inflammatory process. This case expands the diverse range of phenotypes attributed to ABCA4 mutations and further supports the role of whole exome sequencing as a powerful new tool available to aid clinicians in establishing diagnosis for challenging cases.
doi:10.1186/1471-2350-15-11
PMCID: PMC3905103  PMID: 24444108
ABCA4 retinopathy; Pediatric; Homozygosity; Consanguinity
6.  Assessing the necessity of confirmatory testing for exome sequencing results in a clinical molecular diagnostic laboratory 
Purpose
Sanger sequencing is currently considered the gold standard methodology for clinical molecular diagnostic testing. However, next generation sequencing (NGS) has already emerged as a much more efficient means to identify genetic variants within gene panels, the exome, or the genome. We sought to assess the accuracy of NGS variant identification in our clinical genomics laboratory with the goal of establishing a quality score threshold for confirmatory Sanger-based testing.
Methods
Confirmation data for reported results from 144 sequential clinical exome sequencing cases (94 unique variants) and an additional set of 16 variants from comparable research samples were analyzed.
Results
103 of 110 total SNVs analyzed had a quality score ≥Q500, 103 (100%) of which were confirmed by Sanger sequencing. Of the remaining 7 variants with quality scores
Conclusions
For single nucleotide variants, we predict we will be able to reduce our Sanger confirmation workload going forward by 70–80%. This serves as a proof of principle that as long as sufficient validation and quality control measures are implemented, the volume of Sanger confirmation can be reduced, alleviating a significant amount of the labor and cost burden on clinical laboratories wishing to utilize NGS technology. However, Sanger confirmation of low quality single nucleotide variants and all indels (insertions or deletions less than 10 bp) remains necessary at this time in our laboratory.
doi:10.1038/gim.2013.183
PMCID: PMC4079763  PMID: 24406459
Kaiser, Frank J. | Ansari, Morad | Braunholz, Diana | Concepción Gil-Rodríguez, María | Decroos, Christophe | Wilde, Jonathan J. | Fincher, Christopher T. | Kaur, Maninder | Bando, Masashige | Amor, David J. | Atwal, Paldeep S. | Bahlo, Melanie | Bowman, Christine M. | Bradley, Jacquelyn J. | Brunner, Han G. | Clark, Dinah | Del Campo, Miguel | Di Donato, Nataliya | Diakumis, Peter | Dubbs, Holly | Dyment, David A. | Eckhold, Juliane | Ernst, Sarah | Ferreira, Jose C. | Francey, Lauren J. | Gehlken, Ulrike | Guillén-Navarro, Encarna | Gyftodimou, Yolanda | Hall, Bryan D. | Hennekam, Raoul | Hudgins, Louanne | Hullings, Melanie | Hunter, Jennifer M. | Yntema, Helger | Innes, A. Micheil | Kline, Antonie D. | Krumina, Zita | Lee, Hane | Leppig, Kathleen | Lynch, Sally Ann | Mallozzi, Mark B. | Mannini, Linda | Mckee, Shane | Mehta, Sarju G. | Micule, Ieva | Mohammed, Shehla | Moran, Ellen | Mortier, Geert R. | Moser, Joe-Ann S. | Noon, Sarah E. | Nozaki, Naohito | Nunes, Luis | Pappas, John G. | Penney, Lynette S. | Pérez-Aytés, Antonio | Petersen, Michael B. | Puisac, Beatriz | Revencu, Nicole | Roeder, Elizabeth | Saitta, Sulagna | Scheuerle, Angela E. | Schindeler, Karen L. | Siu, Victoria M. | Stark, Zornitza | Strom, Samuel P. | Thiese, Heidi | Vater, Inga | Willems, Patrick | Williamson, Kathleen | Wilson, Louise C. | Hakonarson, Hakon | Quintero-Rivera, Fabiola | Wierzba, Jolanta | Musio, Antonio | Gillessen-Kaesbach, Gabriele | Ramos, Feliciano J. | Jackson, Laird G. | Shirahige, Katsuhiko | Pié, Juan | Christianson, David W. | Krantz, Ian D. | Fitzpatrick, David R. | Deardorff, Matthew A.
Human Molecular Genetics  2014;23(11):2888-2900.
Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.
doi:10.1093/hmg/ddu002
PMCID: PMC4014191  PMID: 24403048
JAMA  2014;312(18):1880-1887.
Importance
Clinical exome sequencing (CES) is rapidly becoming a common molecular diagnostic test for individuals with rare genetic disorders.
Objective
To report on initial clinical indications for CES referrals and molecular diagnostic rates for different indications and for different test types.
Design, Setting, and Participants
Clinical exome sequencing was performed on 814 consecutive patients with undiagnosed, suspected genetic conditions at the University of California, Los Angeles, Clinical Genomics Center between January 2012 and August 2014. Clinical exome sequencing was conducted as trio-CES (both parents and their affected child sequenced simultaneously) to effectively detect de novo and compound heterozygous variants or as proband-CES (only the affected individual sequenced) when parental samples were not available.
Main outcomes and Measures
Clinical indications for CES requests, molecular diagnostic rates of CES overall and for phenotypic subgroups, and differences in molecular diagnostic rates between trio-CES and proband-CES.
Results
Of the 814 cases, the overall molecular diagnosis rate was 26% (213 of 814; 95% CI, 23%-29%). The molecular diagnosis rate for trio-CES was 31% (127 of 410 cases; 95% CI, 27%-36%) and 22% (74 of 338 cases; 95% CI, 18%-27%) for proband-CES. In cases of developmental delay in children (<5 years, n = 138), the molecular diagnosis rate was 41% (45 of 109; 95% CI, 32%-51%) for trio-CES cases and 9% (2of 23, 95% CI, 1%-28%) for proband-CES cases. The significantly higher diagnostic yield (P value = .002; odds ratio, 7.4 [95% CI, 1.6-33.1]) of trio-CES was due to the identification of de novo and compound heterozygous variants.
Conclusions and Relevance
In this sample of patients with undiagnosed, suspected genetic conditions, trio-CES was associated with higher molecular diagnostic yield than proband-CES or traditional molecular diagnostic methods. Additional studies designed to validate these findings and to explore the effect of this approach on clinical and economic outcomes are warranted.
doi:10.1001/jama.2014.14604
PMCID: PMC4278636  PMID: 25326637
BMC Cancer  2015;15:22.
Background
A breast cancer susceptibility locus has been mapped to the gene encoding TOX3. Little is known regarding the expression pattern or biological role of TOX3 in breast cancer or in the mammary gland. Here we analyzed TOX3 expression in murine and human mammary glands and in molecular subtypes of breast cancer, and assessed its ability to alter the biology of breast cancer cells.
Methods
We used a cell sorting strategy, followed by quantitative real-time PCR, to study TOX3 gene expression in the mouse mammary gland. To study the expression of this nuclear protein in human mammary glands and breast tumors, we generated a rabbit monoclonal antibody specific for human TOX3. In vitro studies were performed on MCF7, BT474 and MDA-MB-231 cell lines to study the effects of TOX3 modulation on gene expression in the context of breast cancer cells.
Results
We found TOX3 expression in estrogen receptor-positive mammary epithelial cells, including progenitor cells. A subset of breast tumors also highly expresses TOX3, with poor outcome associated with high expression of TOX3 in luminal B breast cancers. We also demonstrate the ability of TOX3 to alter gene expression in MCF7 luminal breast cancer cells, including cancer relevant genes TFF1 and CXCR4. Knockdown of TOX3 in a luminal B breast cancer cell line that highly expresses TOX3 is associated with slower growth. Surprisingly, TOX3 is also shown to regulate TFF1 in an estrogen-independent and tamoxifen-insensitive manner.
Conclusions
These results demonstrate that high expression of this protein likely plays a crucial role in breast cancer progression. This is in sharp contrast to previous studies that indicated breast cancer susceptibility is associated with lower expression of TOX3. Together, these results suggest two different roles for TOX3, one in the initiation of breast cancer, potentially related to expression of TOX3 in mammary epithelial cell progenitors, and another role for this nuclear protein in the progression of cancer. In addition, these results can begin to shed light on the reported association of TOX3 expression and breast cancer metastasis to the bone, and point to TOX3 as a novel regulator of estrogen receptor-mediated gene expression.
Electronic supplementary material
The online version of this article (doi:10.1186/s12885-015-1018-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s12885-015-1018-2
PMCID: PMC4324787  PMID: 25632947
TOX3; Luminal B breast cancer; TFF1; HMG-box factor; ER target gene activation; Mammary epithelial progenitor
BMC Medical Genetics  2014;15:49.
Background
Wiedemann-Steiner Syndrome (WSS) is characterized by short stature, a variety of dysmorphic facial and skeletal features, characteristic hypertrichosis cubiti (excessive hair on the elbows), mild-to-moderate developmental delay and intellectual disability. [MIM#: 605130]. Here we report two unrelated children for whom clinical exome sequencing of parent-proband trios was performed at UCLA, resulting in a molecular diagnosis of WSS and atypical clinical presentation.
Case presentation
For patient 1, clinical features at 9 years of age included developmental delay, craniofacial abnormalities, and multiple minor anomalies. Patient 2 presented at 1 year of age with developmental delay, microphthalmia, partial 3–4 left hand syndactyly, and craniofacial abnormalities. A de novo missense c.4342T>C variant and a de novo splice site c.4086+G>A variant were identified in the KMT2A gene in patients 1 and 2, respectively.
Conclusions
Based on the clinical and molecular findings, both patients appear to have novel presentations of WSS. As the hallmark hypertrichosis cubiti was not initially appreciated in either case, this syndrome was not suspected during the clinical evaluation. This report expands the phenotypic spectrum of the clinical phenotypes and KMT2A variants associated with WSS.
doi:10.1186/1471-2350-15-49
PMCID: PMC4072606  PMID: 24886118
Wiedemann-Steiner syndrome; Clinical exome sequencing; KMT2A; Intellectual disability; Developmental delay
Science (New York, N.Y.)  2012;336(6086):1314-1317.
The intestinal microflora, typically equated with bacteria, influences diseases such as obesity and inflammatory bowel disease (IBD). Here we show that the mammalian gut contains a rich fungal community that interacts with the immune system through the innate immune receptor Dectin-1. Mice lacking Dectin-1 exhibited increased susceptibility t chemically-induced colitis, which was the result of altered responses to indigenous fungi. In humans we identified a polymorphism in the gene for Dectin-1 (CLEC7A) that is strongly linked to a severe form of ulcerative colitis. Together our findings reveal a novel eukaryotic fungal community in the gut (the “mycobiome”) that coexists with bacteria and substantially expands the repertoire of organisms interacting with the intestinal immune system to influence health and disease.
doi:10.1126/science.1221789
PMCID: PMC3432565  PMID: 22674328
BMC Medical Genetics  2012;13:67.
Background
The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases.
Methods
We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis.
Results
Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified.
Conclusions
Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques.
doi:10.1186/1471-2350-13-67
PMCID: PMC3459799  PMID: 22863181
Stargardt Disease; Macular Degeneration; Exome; Mutation Screening; Molecular Diagnostics; ABCA4; PRPH2
Molecular psychiatry  2009;15(10):996-1005.
Chromosome 17q11-q21 is a region of the genome likely to harbor susceptibility to autism (MIM[209850]) based on prior evidence of linkage to the disorder. This linkage is specific to multiplex pedigrees containing only male probands (MO) within the Autism Genetic Resource Exchange (AGRE). Previously, Stone et al.1 completed a high-density SNP association study of 13.7Mb within this interval, but common variant association was not sufficient to account for the linkage signal. Here we extend this SNP-based association study to complete the coverage of the 2 LOD support interval around the chromosome 17q linkage peak by testing the majority of common alleles in 284 MO trios.
CONCLUSIONS
Markers within an interval containing the gene CACNA1G were found to be associated with Autism Spectrum Disorder at a locally significant level (p = 1.9 × 10-5). While establishing CACNA1G as a novel candidate for autism, these alleles do not contribute sufficient genetic effect to explain the observed linkage, indicating there is substantial genetic heterogeneity despite the clear linkage signal. The region thus likely harbors a combination of multiple common and rare alleles contributing to the genetic risk. These data, along with previous studies of Chromosomes 5 and 7q3, suggest few if any major common risk alleles account for ASD risk under major linkage peaks in the AGRE sample. This provides important evidence for strategies to identify ASD genes, suggesting they should focus on identifying rare variants and common variants of small effect.
doi:10.1038/mp.2009.41
PMCID: PMC2889141  PMID: 19455149
Autism; Autism Spectrum Disorder; Association; Chromosome 17q; CACNA1G
PLoS ONE  2009;4(12):e8491.
Background
In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET).
Results
Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.
Discussion
UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.
doi:10.1371/journal.pone.0008491
PMCID: PMC2797297  PMID: 20046828

Results 1-14 (14)