Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  CFTR gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR) 
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, “Small Fragment Homologous Replacement (SFHR)”, has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely last any measurable CFTR-dependent chloride efflux The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
PMCID: PMC3725395  PMID: 17981772
Homologous Replacement; Real-Time PCR; SFHR; Embryonic Stem Cells; CFTR
2.  IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy 
Molecular Medicine  2012;18(1):1076-1085.
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA.
PMCID: PMC3474434  PMID: 22669476
3.  Small Fragment Homologous Replacement: Evaluation of Factors Influencing Modification Efficiency in an Eukaryotic Assay System 
PLoS ONE  2012;7(2):e30851.
Homologous Replacement is used to modify specific gene sequences of chromosomal DNA in a process referred to as “Small Fragment Homologous Replacement”, where DNA fragments replace genomic target resulting in specific sequence changes. To optimize the efficiency of this process, we developed a reporter based assay system where the replacement frequency is quantified by cytofluorimetric analysis following restoration of a stably integrated mutated eGFP gene in the genome of SV-40 immortalized mouse embryonic fibroblasts (MEF-SV-40). To obtain the highest correction frequency with this system, several parameters were considered: fragment synthesis and concentration, cell cycle phase and methylation status of both fragment and recipient genome. In addition, different drugs were employed to test their ability to improve technique efficiency. SFHR-mediated genomic modification resulted to be stably transmitted for several cell generations and confirmed at transcript and genomic levels. Modification efficiency was estimated in a range of 0.01–0.5%, further increasing when PARP-1 repair pathway was inhibited. In this study, for the first time SFHR efficiency issue was systematically approached and in part addressed, therefore opening new potential therapeutic ex-vivo applications.
PMCID: PMC3281040  PMID: 22359552
4.  Novel mutations of TCOF1 gene in European patients with treacher Collins syndrome 
BMC Medical Genetics  2011;12:125.
Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases.
In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication.
Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein.
This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein.
PMCID: PMC3199234  PMID: 21951868
Treacher Collins syndrome; TCOF1 mutations; microdeletions; microinsertions
5.  Recessive congenital myotonia resulting from maternal isodisomy of chromosome 7: a case report 
Cases Journal  2009;2:7111.
Autosomal dominant (Thomsen) and recessive (Becker) congenital myotonia are two different non dystrophic disorders, due to allelic mutations of the muscle chloride channel gene, located on chromosome 7q35. More than two thirds of the muscle chloride channel gene mutations occur independently in unique families and cause the recessive form of the disease. Becker disease is more common and severe than Thomsen disease. Here, we report on the clinical and molecular data of the first patient with maternal uniparental disomy for chromosome 7 and recessive congenital myotonia. The proband is a 15-year-old male, homozygous for a missense mutation within muscle chloride channel gene, showing few characteristic signs of the Silver Russell Syndrome.
PMCID: PMC2827104  PMID: 20181190
6.  Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy 
Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations.
We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity.
We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC).
Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%).
PMCID: PMC419352  PMID: 15084222
Cystic fibrosis; CFTR mutation screening; DHPLC
7.  Sequence-specific modification of genomic DNA by small DNA fragments 
Journal of Clinical Investigation  2003;112(5):637-641.
Small DNA fragments have been used to modify endogenous genomic DNA in both human and mouse cells. This strategy for sequence-specific modification or genomic editing, known as small-fragment homologous replacement (SFHR), has yet to be characterized in terms of its underlying mechanisms. Genotypic and phenotypic analyses following SFHR have shown specific modification of disease-causing genetic loci associated with cystic fibrosis, β-thalassemia, and Duchenne muscular dystrophy, suggesting that SFHR has potential as a therapeutic modality for the treatment of monogenic inherited disease.
PMCID: PMC182219  PMID: 12952908
8.  In vitro correction of cystic fibrosis epithelial cell lines by small fragment homologous replacement (SFHR) technique 
SFHR (small fragment homologous replacement)-mediated targeting is a process that has been used to correct specific mutations in mammalian cells. This process involves both chemical and cellular factors that are not yet defined. To evaluate potential of this technique for gene therapy it is necessary to characterize gene transfer efficacy in terms of the transfection vehicle, the genetic target, and the cellular processing of the DNA and DNA-vehicle complex.
In this study, small fragments of genomic cystic fibrosis (CF) transmembrane conductance regulator (CFTR) DNA, that comprise the wild-type and ΔF508 sequences, were transfected into immortalized CF and normal airway epithelial cells, respectively. Homologous replacement was evaluated using PCR and sequence-based analyses of cellular DNA and RNA. Individual stages of cationic lipid-facilitated SFHR in cultured cell lines were also examined using transmission electron microscopy (TEM).
We demonstrated that the lipid/DNA (+/-) ratio influences the mode of entry into the cell and therefore affects the efficacy of SFHR-mediated gene targeting. Lipid/DNA complexes with more negative ratios entered the cell via a plasma membrane fusion pathway. Transfer of the DNA that relies on an endocytic pathway appeared more effective at mediating SFHR. In addition, it was also clear that there is a correlation between the specific cell line transfected and the optimal lipid/DNA ratio.
These studies provide new insights into factors that underlie SFHR-mediated gene targeting efficacy and into the parameters that can be modulated for its optimization.
PMCID: PMC130050  PMID: 12243649
gene therapy; cystic fibrosis transmembrane conductance regulator (CFTR); gene targeting; transmission electron microscopy (TEM); transfection

Results 1-8 (8)