PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (44)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function 
Artigas, María Soler | Loth, Daan W | Wain, Louise V | Gharib, Sina A | Obeidat, Ma’en | Tang, Wenbo | Zhai, Guangju | Zhao, Jing Hua | Smith, Albert Vernon | Huffman, Jennifer E | Albrecht, Eva | Jackson, Catherine M | Evans, David M | Cadby, Gemma | Fornage, Myriam | Manichaikul, Ani | Lopez, Lorna M | Johnson, Toby | Aldrich, Melinda C | Aspelund, Thor | Barroso, Inês | Campbell, Harry | Cassano, Patricia A | Couper, David J | Eiriksdottir, Gudny | Franceschini, Nora | Garcia, Melissa | Gieger, Christian | Gislason, Gauti Kjartan | Grkovic, Ivica | Hammond, Christopher J | Hancock, Dana B | Harris, Tamara B | Ramasamy, Adaikalavan | Heckbert, Susan R | Heliövaara, Markku | Homuth, Georg | Hysi, Pirro G | James, Alan L | Jankovic, Stipan | Joubert, Bonnie R | Karrasch, Stefan | Klopp, Norman | Koch, Beate | Kritchevsky, Stephen B | Launer, Lenore J | Liu, Yongmei | Loehr, Laura R | Lohman, Kurt | Loos, Ruth JF | Lumley, Thomas | Al Balushi, Khalid A | Ang, Wei Q | Barr, R Graham | Beilby, John | Blakey, John D | Boban, Mladen | Boraska, Vesna | Brisman, Jonas | Britton, John R | Brusselle, Guy G | Cooper, Cyrus | Curjuric, Ivan | Dahgam, Santosh | Deary, Ian J | Ebrahim, Shah | Eijgelsheim, Mark | Francks, Clyde | Gaysina, Darya | Granell, Raquel | Gu, Xiangjun | Hankinson, John L | Hardy, Rebecca | Harris, Sarah E | Henderson, John | Henry, Amanda | Hingorani, Aroon D | Hofman, Albert | Holt, Patrick G | Hui, Jennie | Hunter, Michael L | Imboden, Medea | Jameson, Karen A | Kerr, Shona M | Kolcic, Ivana | Kronenberg, Florian | Liu, Jason Z | Marchini, Jonathan | McKeever, Tricia | Morris, Andrew D | Olin, Anna-Carin | Porteous, David J | Postma, Dirkje S | Rich, Stephen S | Ring, Susan M | Rivadeneira, Fernando | Rochat, Thierry | Sayer, Avan Aihie | Sayers, Ian | Sly, Peter D | Smith, George Davey | Sood, Akshay | Starr, John M | Uitterlinden, André G | Vonk, Judith M | Wannamethee, S Goya | Whincup, Peter H | Wijmenga, Cisca | Williams, O Dale | Wong, Andrew | Mangino, Massimo | Marciante, Kristin D | McArdle, Wendy L | Meibohm, Bernd | Morrison, Alanna C | North, Kari E | Omenaas, Ernst | Palmer, Lyle J | Pietiläinen, Kirsi H | Pin, Isabelle | Polašek, Ozren | Pouta, Anneli | Psaty, Bruce M | Hartikainen, Anna-Liisa | Rantanen, Taina | Ripatti, Samuli | Rotter, Jerome I | Rudan, Igor | Rudnicka, Alicja R | Schulz, Holger | Shin, So-Youn | Spector, Tim D | Surakka, Ida | Vitart, Veronique | Völzke, Henry | Wareham, Nicholas J | Warrington, Nicole M | Wichmann, H-Erich | Wild, Sarah H | Wilk, Jemma B | Wjst, Matthias | Wright, Alan F | Zgaga, Lina | Zemunik, Tatijana | Pennell, Craig E | Nyberg, Fredrik | Kuh, Diana | Holloway, John W | Boezen, H Marike | Lawlor, Debbie A | Morris, Richard W | Probst-Hensch, Nicole | Kaprio, Jaakko | Wilson, James F | Hayward, Caroline | Kähönen, Mika | Heinrich, Joachim | Musk, Arthur W | Jarvis, Deborah L | Gläser, Sven | Järvelin, Marjo-Riitta | Stricker, Bruno H Ch | Elliott, Paul | O’Connor, George T | Strachan, David P | London, Stephanie J | Hall, Ian P | Gudnason, Vilmundur | Tobin, Martin D
Nature Genetics  2011;43(11):1082-1090.
Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
doi:10.1038/ng.941
PMCID: PMC3267376  PMID: 21946350
2.  Genetic predictors of fibrin D-dimer levels in healthy adults 
Circulation  2011;123(17):1864-1872.
Background
Fibrin fragment D-dimer is one of several peptides produced when cross-linked fibrin is degraded by plasmin, and is the most widely-used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search.
Methods and Results
A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21,052 European-ancestry adults. Plasma levels of D-dimer were measured independently in each of 13 cohorts. Each study analyzed the association between ~2.6 million genotyped and imputed variants across the 22 autosomal chromosomes and natural-log transformed D-dimer levels using linear regression in additive genetic models adjusted for age and sex. Among all variants, 74 exceeded the genome-wide significance threshold and marked 3 regions. At 1p22, rs12029080 (p-value 6.4×10−52) was 46.0 kb upstream from F3, coagulation factor III (tissue factor). At 1q24, rs6687813 (p-value 2.4×10−14) was 79.7 kb downstream of F5, coagulation factor V. At 4q32, rs13109457 (p-value 2.9×10−18) was located between 2 fibrinogen genes: 10.4 kb downstream from FGG and 3.0 kb upstream from FGA. Variants were associated with a 0.099, 0.096, and 0.061 unit difference, respectively, in natural-log transformed D-dimer and together accounted for 1.8% of the total variance. When adjusted for non-synonymous substitutions in F5 and FGA loci known to be associated with D-dimer levels, there was no evidence of an additional association at either locus.
Conclusions
Three genes were associated with fibrin D-dimer levels, of which the F3 association was the strongest and has not been previously reported.
doi:10.1161/CIRCULATIONAHA.110.009480
PMCID: PMC3095913  PMID: 21502573
genome-wide variation; D-dimer; epidemiology; meta-analysis; thrombosis; hemostasis
3.  Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936☆ 
Neurobiology of Aging  2014;35(6):1513.e25-1513.e33.
Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the effects of TOMM40 on white matter integrity appear to be novel, although replication is required in large independent samples.
doi:10.1016/j.neurobiolaging.2014.01.006
PMCID: PMC3969262  PMID: 24508314
White matter; Cognitive ageing; Diffusion MRI; Tractography; APOE; TOMM40; Alzheimer's disease
4.  Molecular genetic contributions to socioeconomic status and intelligence 
Intelligence  2014;44(100):26-32.
Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the ‘Genome-wide Complex Trait Analyses’ (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status.
Highlights
•Generation Scotland is a large family-based cohort of ~ 24,000 people.•We investigate the genetic influences on education, SES, and intelligence.•Both DNA-based (subset of ~ 6500) and pedigree-based analyses are used.•Genetic effects on SES and education are linked to the genetic basis of intelligence.•There are also substantial environmental effects on all three traits.
doi:10.1016/j.intell.2014.02.006
PMCID: PMC4051988  PMID: 24944428
Generation Scotland; Intelligence; Education; Socioeconomic status; Genetics
5.  Common Genetic Variants Explain the Majority of the Correlation Between Height and Intelligence: The Generation Scotland Study 
Behavior Genetics  2014;44:91-96.
Greater height and higher intelligence test scores are predictors of better health outcomes. Here, we used molecular (single-nucleotide polymorphism) data to estimate the genetic correlation between height and general intelligence (g) in 6,815 unrelated subjects (median age 57, IQR 49–63) from the Generation Scotland: Scottish Family Health Study cohort. The phenotypic correlation between height and g was 0.16 (SE 0.01). The genetic correlation between height and g was 0.28 (SE 0.09) with a bivariate heritability estimate of 0.71. Understanding the molecular basis of the correlation between height and intelligence may help explain any shared role in determining health outcomes. This study identified a modest genetic correlation between height and intelligence with the majority of the phenotypic correlation being explained by shared genetic influences.
Electronic supplementary material
The online version of this article (doi:10.1007/s10519-014-9644-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s10519-014-9644-z
PMCID: PMC3938855  PMID: 24554214
Height; Intelligence; Molecular genetics; Genetic correlation; Generation Scotland
6.  Complex Variation in Measures of General Intelligence and Cognitive Change 
PLoS ONE  2013;8(12):e81189.
Combining information from multiple SNPs may capture a greater amount of genetic variation than from the sum of individual SNP effects and help identifying missing heritability. Regions may capture variation from multiple common variants of small effect, multiple rare variants or a combination of both. We describe regional heritability mapping of human cognition. Measures of crystallised (gc) and fluid intelligence (gf) in late adulthood (64–79 years) were available for 1806 individuals genotyped for 549,692 autosomal single nucleotide polymorphisms (SNPs). The same individuals were tested at age 11, enabling us the rare opportunity to measure cognitive change across most of their lifespan. 547,750 SNPs ranked by position are divided into 10, 908 overlapping regions of 101 SNPs to estimate the genetic variance each region explains, an approach that resembles classical linkage methods. We also estimate the genetic variation explained by individual autosomes and by SNPs within genes. Empirical significance thresholds are estimated separately for each trait from whole genome scans of 500 permutated data sets. The 5% significance threshold for the likelihood ratio test of a single region ranged from 17–17.5 for the three traits. This is the equivalent to nominal significance under the expectation of a chi-squared distribution (between 1df and 0) of P<1.44×10−5. These thresholds indicate that the distribution of the likelihood ratio test from this type of variance component analysis should be estimated empirically. Furthermore, we show that estimates of variation explained by these regions can be grossly overestimated. After applying permutation thresholds, a region for gf on chromosome 5 spanning the PRRC1 gene is significant at a genome-wide 10% empirical threshold. Analysis of gene methylation on the temporal cortex provides support for the association of PRRC1 and fluid intelligence (P = 0.004), and provides a prime candidate gene for high throughput sequencing of these uniquely informative cohorts.
doi:10.1371/journal.pone.0081189
PMCID: PMC3865348  PMID: 24349040
7.  Alzheimer’s Disease Susceptibility Genes APOE and TOMM40, and Hippocampal Volumes in the Lothian Birth Cohort 1936  
PLoS ONE  2013;8(11):e80513.
The APOE ε and TOMM40 rs10524523 (‘523’) variable length poly-T repeat gene loci have been significantly and independently associated with Alzheimer’s disease (AD) related phenotypes such as age of clinical onset. Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current study aimed to test for independent effects of APOE ε and TOMM40 ‘523’ genotypes on hippocampal volumes as assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε2/ε3/ε4 status and TOMM40 ‘523’ poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7 years (standard deviation = 0.7, N range = 624 to 636). No significant effects of APOE ε or TOMM40 523 genotype were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1) their specific techniques in adjusting for brain size; 2) assessing more detailed sub-divisions of the hippocampal formation; and 3) testing whether significant APOE-hippocampal associations are independent of generalised brain atrophy.
doi:10.1371/journal.pone.0080513
PMCID: PMC3829876  PMID: 24260406
8.  Genome-wide association uncovers shared genetic effects among personality traits and mood states 
Measures of personality and psychological distress are correlated and exhibit genetic covariance. We conducted univariate genome-wide SNP (~2.5 million) and gene-based association analyses of these traits and examined the overlap in results across traits, including a prediction analysis of mood states using genetic polygenic scores for personality. Measures of neuroticism, extraversion, and symptoms of anxiety, depression, and general psychological distress were collected in eight European cohorts (n ranged 546 to 1 338; maximum total n=6 268) whose mean age ranged from 55 to 79 years. Meta-analysis of the cohort results was performed, with follow-up associations of the top SNPs and genes investigated in independent cohorts (n=527 to 6 032). Suggestive association (P=8×10−8) of rs1079196 in the FHIT gene was observed with symptoms of anxiety. Other notable associations (P<6.09×10−6) included SNPs in five genes for neuroticism (LCE3C, POLR3A, LMAN1L, ULK3, SCAMP2), KIAA0802 for extraversion, and NOS1 for general psychological distress. An association between symptoms of depression and rs7582472 (near to MGAT5 and NCKAP5) was replicated in two independent samples, but other replication findings were less consistent. Gene-based tests identified a significant locus on chromosome 15 (spanning five genes) associated with neuroticism which replicated (P<0.05) in an independent cohort. Support for common genetic effects among personality and mood (particularly neuroticism and depressive symptoms) was found in terms of SNP association overlap and polygenic score prediction. The variance explained by individual SNPs was very small (up to 1%) confirming that there are no moderate/large effects of common SNPs on personality and related traits.
doi:10.1002/ajmg.b.32072
PMCID: PMC3795298  PMID: 22628180
GWAS; extraversion; neuroticism; anxiety; depression
9.  DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking 
Human Molecular Genetics  2013;23(4):906-919.
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
doi:10.1093/hmg/ddt485
PMCID: PMC3900104  PMID: 24092329
10.  Is bipolar disorder more common in highly intelligent people? A cohort study of a million men 
Molecular psychiatry  2012;18(2):190-194.
Anecdotal and biographical reports have long suggested that bipolar disorder is more common in people with exceptional cognitive or creative ability. Epidemiological evidence for such a link is sparse. We investigated the relationship between intelligence and subsequent risk of hospitalisation for bipolar disorder in a prospective cohort study of 1,049,607 Swedish men. Intelligence was measured on conscription for military service at a mean age of 18.3 years and data on psychiatric hospital admissions over a mean follow-up period of 22.6 years was obtained from national records. Risk of hospitalization with any form of bipolar disorder fell in a stepwise manner as intelligence increased (p for linear trend <0.0001). However, when we restricted analyses to men with no psychiatric comorbidity, there was a ‘reversed-J’ shaped association: men with the lowest intelligence had the greatest risk of being admitted with pure bipolar disorder, but risk was also elevated among men with the highest intelligence (p for quadratic trend = 0.03), primarily in those with the highest verbal (p for quadratic trend=0.009) or technical ability (p for quadratic trend <0.0001). At least in men, high intelligence may indeed be a risk factor for bipolar disorder, but only in the minority of cases who have the disorder in a pure form with no psychiatric comorbidity.
doi:10.1038/mp.2012.26
PMCID: PMC3705611  PMID: 22472877
11.  Developmental Expression of Orphan G Protein-Coupled Receptor 50 in the Mouse Brain 
ACS Chemical Neuroscience  2012;3(6):459-472.
Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis.
doi:10.1021/cn300008p
PMCID: PMC3382458  PMID: 22860215
GPR50; Nogo-A; Cadherin 8; ABCA2; rt-PCR; immunohistochemistry
12.  Assessment of F/HN-Pseudotyped Lentivirus as a Clinically Relevant Vector for Lung Gene Therapy 
Rationale: Ongoing efforts to improve pulmonary gene transfer thereby enabling gene therapy for the treatment of lung diseases, such as cystic fibrosis (CF), has led to the assessment of a lentiviral vector (simian immunodeficiency virus [SIV]) pseudotyped with the Sendai virus envelope proteins F and HN.
Objectives: To place this vector onto a translational pathway to the clinic by addressing some key milestones that have to be achieved.
Methods: F/HN-SIV transduction efficiency, duration of expression, and toxicity were assessed in mice. In addition, F/HN-SIV was assessed in differentiated human air–liquid interface cultures, primary human nasal epithelial cells, and human and sheep lung slices.
Measurements and Main Results: A single dose produces lung expression for the lifetime of the mouse (∼2 yr). Only brief contact time is needed to achieve transduction. Repeated daily administration leads to a dose-related increase in gene expression. Repeated monthly administration to mouse lower airways is feasible without loss of gene expression. There is no evidence of chronic toxicity during a 2-year study period. F/HN-SIV leads to persistent gene expression in human differentiated airway cultures and human lung slices and transduces freshly obtained primary human airway epithelial cells.
Conclusions: The data support F/HN-pseudotyped SIV as a promising vector for pulmonary gene therapy for several diseases including CF. We are now undertaking the necessary refinements to progress this vector into clinical trials.
doi:10.1164/rccm.201206-1056OC
PMCID: PMC3530223  PMID: 22955314
lentivirus; cystic fibrosis; gene therapy; lung; gene transfer
13.  Identification of common variants associated with human hippocampal and intracranial volumes 
Stein, Jason L | Medland, Sarah E | Vasquez, Alejandro Arias | Hibar, Derrek P | Senstad, Rudy E | Winkler, Anderson M | Toro, Roberto | Appel, Katja | Bartecek, Richard | Bergmann, Ørjan | Bernard, Manon | Brown, Andrew A | Cannon, Dara M | Chakravarty, M Mallar | Christoforou, Andrea | Domin, Martin | Grimm, Oliver | Hollinshead, Marisa | Holmes, Avram J | Homuth, Georg | Hottenga, Jouke-Jan | Langan, Camilla | Lopez, Lorna M | Hansell, Narelle K | Hwang, Kristy S | Kim, Sungeun | Laje, Gonzalo | Lee, Phil H | Liu, Xinmin | Loth, Eva | Lourdusamy, Anbarasu | Mattingsdal, Morten | Mohnke, Sebastian | Maniega, Susana Muñoz | Nho, Kwangsik | Nugent, Allison C | O’Brien, Carol | Papmeyer, Martina | Pütz, Benno | Ramasamy, Adaikalavan | Rasmussen, Jerod | Rijpkema, Mark | Risacher, Shannon L | Roddey, J Cooper | Rose, Emma J | Ryten, Mina | Shen, Li | Sprooten, Emma | Strengman, Eric | Teumer, Alexander | Trabzuni, Daniah | Turner, Jessica | van Eijk, Kristel | van Erp, Theo G M | van Tol, Marie-Jose | Wittfeld, Katharina | Wolf, Christiane | Woudstra, Saskia | Aleman, Andre | Alhusaini, Saud | Almasy, Laura | Binder, Elisabeth B | Brohawn, David G | Cantor, Rita M | Carless, Melanie A | Corvin, Aiden | Czisch, Michael | Curran, Joanne E | Davies, Gail | de Almeida, Marcio A A | Delanty, Norman | Depondt, Chantal | Duggirala, Ravi | Dyer, Thomas D | Erk, Susanne | Fagerness, Jesen | Fox, Peter T | Freimer, Nelson B | Gill, Michael | Göring, Harald H H | Hagler, Donald J | Hoehn, David | Holsboer, Florian | Hoogman, Martine | Hosten, Norbert | Jahanshad, Neda | Johnson, Matthew P | Kasperaviciute, Dalia | Kent, Jack W | Kochunov, Peter | Lancaster, Jack L | Lawrie, Stephen M | Liewald, David C | Mandl, René | Matarin, Mar | Mattheisen, Manuel | Meisenzahl, Eva | Melle, Ingrid | Moses, Eric K | Mühleisen, Thomas W | Nauck, Matthias | Nöthen, Markus M | Olvera, Rene L | Pandolfo, Massimo | Pike, G Bruce | Puls, Ralf | Reinvang, Ivar | Rentería, Miguel E | Rietschel, Marcella | Roffman, Joshua L | Royle, Natalie A | Rujescu, Dan | Savitz, Jonathan | Schnack, Hugo G | Schnell, Knut | Seiferth, Nina | Smith, Colin | Steen, Vidar M | Valdés Hernández, Maria C | Van den Heuvel, Martijn | van der Wee, Nic J | Van Haren, Neeltje E M | Veltman, Joris A | Völzke, Henry | Walker, Robert | Westlye, Lars T | Whelan, Christopher D | Agartz, Ingrid | Boomsma, Dorret I | Cavalleri, Gianpiero L | Dale, Anders M | Djurovic, Srdjan | Drevets, Wayne C | Hagoort, Peter | Hall, Jeremy | Heinz, Andreas | Jack, Clifford R | Foroud, Tatiana M | Le Hellard, Stephanie | Macciardi, Fabio | Montgomery, Grant W | Poline, Jean Baptiste | Porteous, David J | Sisodiya, Sanjay M | Starr, John M | Sussmann, Jessika | Toga, Arthur W | Veltman, Dick J | Walter, Henrik | Weiner, Michael W | Bis, Joshua C | Ikram, M Arfan | Smith, Albert V | Gudnason, Vilmundur | Tzourio, Christophe | Vernooij, Meike W | Launer, Lenore J | DeCarli, Charles | Seshadri, Sudha | Andreassen, Ole A | Apostolova, Liana G | Bastin, Mark E | Blangero, John | Brunner, Han G | Buckner, Randy L | Cichon, Sven | Coppola, Giovanni | de Zubicaray, Greig I | Deary, Ian J | Donohoe, Gary | de Geus, Eco J C | Espeseth, Thomas | Fernández, Guillén | Glahn, David C | Grabe, Hans J | Hardy, John | Hulshoff Pol, Hilleke E | Jenkinson, Mark | Kahn, René S | McDonald, Colm | McIntosh, Andrew M | McMahon, Francis J | McMahon, Katie L | Meyer-Lindenberg, Andreas | Morris, Derek W | Müller-Myhsok, Bertram | Nichols, Thomas E | Ophoff, Roel A | Paus, Tomas | Pausova, Zdenka | Penninx, Brenda W | Potkin, Steven G | Sämann, Philipp G | Saykin, Andrew J | Schumann, Gunter | Smoller, Jordan W | Wardlaw, Joanna M | Weale, Michael E | Martin, Nicholas G | Franke, Barbara | Wright, Margaret J | Thompson, Paul M
Nature genetics  2012;44(5):552-561.
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer’s disease1,2 and is reduced in schizophrenia3, major depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are highly heritable6,7, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
doi:10.1038/ng.2250
PMCID: PMC3635491  PMID: 22504417
14.  PKA Phosphorylation of NDE1 Is DISC1/PDE4 Dependent and Modulates Its Interaction with LIS1 and NDEL1 
Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite out-growth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions.
doi:10.1523/JNEUROSCI.5410-10.2011
PMCID: PMC3610090  PMID: 21677187
15.  Pedigree and genotyping quality analyses of over 10,000 DNA samples from the Generation Scotland: Scottish Family Health Study 
BMC Medical Genetics  2013;14:38.
Background
Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based biobank of 24,000 participants with rich phenotype and DNA available for genetic research. This paper describes the laboratory results from genotyping 32 single nucleotide polymorphisms (SNPs) on DNA from over 10,000 participants who attended GS:SFHS research clinics. The analysis described here was undertaken to test the quality of genetic information available to researchers. The success rate of each marker genotyped (call rate), minor allele frequency and adherence to Mendelian inheritance are presented. The few deviations in marker transmission in the 925 parent-child trios analysed were assessed as to whether they were likely to be miscalled genotypes, data or sample handling errors, or pedigree inaccuracies including non-paternity.
Methods
The first 10,450 GS:SFHS clinic participants who had spirometry and smoking data available and DNA extracted were selected. 32 SNPs were assayed, chosen as part of a replication experiment from a Genome-Wide Association Study meta-analysis of lung function.
Results
In total 325,336 genotypes were returned. The overall project pass rate (32 SNPs on 10,450 samples) was 97.29%. A total of 925 parent-child trios were assessed for transmission of the SNP markers, with 16 trios indicating evidence of inconsistency in the recorded pedigrees.
Conclusions
The Generation Scotland: Scottish Family Health Study used well-validated study methods and can produce good quality genetic data, with a low error rate. The GS:SFHS DNA samples are of high quality and the family groups were recorded and processed with accuracy during collection of the cohort.
doi:10.1186/1471-2350-14-38
PMCID: PMC3614907  PMID: 23521772
Genetics; SNP Genotyping; Parent-child trios; Error rate; Non paternity; Generation Scotland; Biobank
16.  Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts 
Genetic influences have an important role in the ageing process. The genetic factors that influence success in bodily ageing may also contribute to the successful ageing of cognitive abilities. A comparative genomics approach found longevity genes conserved between yeast Saccharomyces cerevisiae and nematode Caenorhabditis elegans. We hypothesised that these longevity genes influence variance in cognitive ability and age-related cognitive decline in humans. Here, we investigated six of these genes that have human orthologs and show expression in the brain. We tested AFG3L2 (MIM: 604581, AFG3 ATPase family gene 3-like 2 (yeast)), FRAP1 (MIM: 601231, a FK506 binding protein 12-rapamycin associated protein), MAT1A, MAT2A (MIM: 610550 and 601468, methionine adenosyltransferases I alpha and II alpha, respectively), SYNJ1 and SYNJ2 (MIM: 604297 and 609410, synaptojanin-1 and synaptojanin-2, respectively) in approximately 1000 healthy older Scots: the Lothian Birth Cohort 1936 (LBC1936). They were tested on general cognitive ability at age 11 years. At a mean age of 70 years, they re-sat the same general cognitive ability test and underwent an additional battery of diverse cognitive tests. In all, 70 tag and functional SNPs in the six longevity genes were genotyped and tested for association with cognition and cognitive ageing in LBC1936. Suggestive associations were detected between SNPs in SYNJ2, MAT1A, AFG3L2 and SYNJ1 and a general memory factor and general cognitive ability at age 11 and 70 years. Replication studies for cognitive ability associations were performed in 2506 samples from the Cognitive Ageing Genetics in England and Scotland consortium. A meta-analysis replicated the SYNJ2 association with cognitive abilities (lowest P=0.00077). SYNJ2 is a novel gene in which variation is potentially associated with cognitive abilities.
doi:10.1038/ejhg.2011.201
PMCID: PMC3283186  PMID: 22045296
cognition; cognitive ageing; longevity genes; gene association; SYNJ2
17.  Genetic Copy Number Variation and General Cognitive Ability 
PLoS ONE  2012;7(12):e37385.
Differences in genomic structure between individuals are ubiquitous features of human genetic variation. Specific copy number variants (CNVs) have been associated with susceptibility to numerous complex psychiatric disorders, including attention-deficit-hyperactivity disorder, autism-spectrum disorders and schizophrenia. These disorders often display co-morbidity with low intelligence. Rare chromosomal deletions and duplications are associated with these disorders, so it has been suggested that these deletions or duplications may be associated with differences in intelligence. Here we investigate associations between large (≥500kb), rare (<1% population frequency) CNVs and both fluid and crystallized intelligence in community-dwelling older people. We observe no significant associations between intelligence and total CNV load. Examining individual CNV regions previously implicated in neuropsychological disorders, we find suggestive evidence that CNV regions around SHANK3 are associated with fluid intelligence as derived from a battery of cognitive tests. This is the first study to examine the effects of rare CNVs as called by multiple algorithms on cognition in a large non-clinical sample, and finds no effects of such variants on general cognitive ability.
doi:10.1371/journal.pone.0037385
PMCID: PMC3530597  PMID: 23300510
18.  DISC1 at 10: connecting psychiatric genetics and neuroscience 
Trends in Molecular Medicine  2011;17(12):699-706.
Psychiatric genetics research, as exemplified by the DISC1 gene, aspires to inform on mental health etiology and to suggest improved strategies for intervention. DISC1 was discovered in 2000 through the molecular cloning of a chromosomal translocation that segregated with a spectrum of major mental illnesses in a single large Scottish family. Through in vitro experiments and mouse models, DISC1 has been firmly established as a genetic risk factor for a spectrum of psychiatric illness. As a consequence of its protein scaffold function, the DISC1 protein impacts on many aspects of brain function, impacting both neurosignalling and neurodevelopment. DISC1 is a pathfinder for understanding psychopathology, brain development, signaling and circuitry. Though much remains to be learnt and understood, potential targets for drug development are starting to emerge, and in this review, we will discuss the 10 years of research that has helped us understand key roles of DISC1 in psychiatric disease.
doi:10.1016/j.molmed.2011.09.002
PMCID: PMC3253483  PMID: 22015021
19.  DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness 
ACS Chemical Neuroscience  2011;2(11):609-632.
Disrupted in schizophrenia 1 (DISC1) is well established as a genetic risk factor across a spectrum of psychiatric disorders, a role supported by a growing body of biological studies, making the DISC1 protein interaction network an attractive therapeutic target. By contrast, there is a relative deficit of structural information to relate to the myriad biological functions of DISC1. Here, we critically appraise the available bioinformatics and biochemical analyses on DISC1 and key interacting proteins, and integrate this with the genetic and biological data. We review, analyze, and make predictions regarding the secondary structure and propensity for disordered regions within DISC1, its protein-interaction domains, subcellular localization motifs, and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We discuss signaling pathways of high pharmacological potential wherein DISC1 participates, including those involving phosphodiesterase 4 (PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and priority areas can inform future research in the translational and potentially guide the therapeutic processes.
doi:10.1021/cn200062k
PMCID: PMC3222219  PMID: 22116789
DISC1; schizophrenia; structure; bioinformatics; GSK3β; therapeutic potential
20.  The Mitosis and Neurodevelopment Proteins NDE1 and NDEL1 Form Dimers, Tetramers, and Polymers with a Folded Back Structure in Solution* 
The Journal of Biological Chemistry  2012;287(39):32381-32393.
Background: NDE1 and NDEL1 are neurodevelopmental and mitotic proteins with extended coiled-coil N termini, but unknown C-terminal structure.
Results: Recombinant NDE1/NDEL1 form dimers and tetramers in which their C termini interact with their N-terminal domains.
Conclusion: NDE1/NDEL1 each adopt a sharply bent back structure.
Significance: This explains the existence of two distinct dynein-binding domains on NDE1/NDEL1 and instability of disease-associated mutants lacking C termini.
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8–167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.
doi:10.1074/jbc.M112.393439
PMCID: PMC3463352  PMID: 22843697
Electron Microscopy (EM); Homology Modeling; Mass Spectrometry (MS); Neurodevelopment; Protein Cross-linking; Protein Folding; Protein Structure; NDE1; NDEL1
21.  A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins 
Human Molecular Genetics  2012;21(15):3374-3386.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression.
GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117).
doi:10.1093/hmg/dds169
PMCID: PMC3392113  PMID: 22547224
22.  New gene functions in megakaryopoiesis and platelet formation 
Gieger, Christian | Radhakrishnan, Aparna | Cvejic, Ana | Tang, Weihong | Porcu, Eleonora | Pistis, Giorgio | Serbanovic-Canic, Jovana | Elling, Ulrich | Goodall, Alison H. | Labrune, Yann | Lopez, Lorna M. | Mägi, Reedik | Meacham, Stuart | Okada, Yukinori | Pirastu, Nicola | Sorice, Rossella | Teumer, Alexander | Voss, Katrin | Zhang, Weihua | Ramirez-Solis, Ramiro | Bis, Joshua C. | Ellinghaus, David | Gögele, Martin | Hottenga, Jouke-Jan | Langenberg, Claudia | Kovacs, Peter | O’Reilly, Paul F. | Shin, So-Youn | Esko, Tõnu | Hartiala, Jaana | Kanoni, Stavroula | Murgia, Federico | Parsa, Afshin | Stephens, Jonathan | van der Harst, Pim | van der Schoot, C. Ellen | Allayee, Hooman | Attwood, Antony | Balkau, Beverley | Bastardot, François | Basu, Saonli | Baumeister, Sebastian E. | Biino, Ginevra | Bomba, Lorenzo | Bonnefond, Amélie | Cambien, François | Chambers, John C. | Cucca, Francesco | D’Adamo, Pio | Davies, Gail | de Boer, Rudolf A. | de Geus, Eco J. C. | Döring, Angela | Elliott, Paul | Erdmann, Jeanette | Evans, David M. | Falchi, Mario | Feng, Wei | Folsom, Aaron R. | Frazer, Ian H. | Gibson, Quince D. | Glazer, Nicole L. | Hammond, Chris | Hartikainen, Anna-Liisa | Heckbert, Susan R. | Hengstenberg, Christian | Hersch, Micha | Illig, Thomas | Loos, Ruth J. F. | Jolley, Jennifer | Khaw, Kay Tee | Kühnel, Brigitte | Kyrtsonis, Marie-Christine | Lagou, Vasiliki | Lloyd-Jones, Heather | Lumley, Thomas | Mangino, Massimo | Maschio, Andrea | Leach, Irene Mateo | McKnight, Barbara | Memari, Yasin | Mitchell, Braxton D. | Montgomery, Grant W. | Nakamura, Yusuke | Nauck, Matthias | Navis, Gerjan | Nöthlings, Ute | Nolte, Ilja M. | Porteous, David J. | Pouta, Anneli | Pramstaller, Peter P. | Pullat, Janne | Ring, Susan M. | Rotter, Jerome I. | Ruggiero, Daniela | Ruokonen, Aimo | Sala, Cinzia | Samani, Nilesh J. | Sambrook, Jennifer | Schlessinger, David | Schreiber, Stefan | Schunkert, Heribert | Scott, James | Smith, Nicholas L. | Snieder, Harold | Starr, John M. | Stumvoll, Michael | Takahashi, Atsushi | Tang, W. H. Wilson | Taylor, Kent | Tenesa, Albert | Thein, Swee Lay | Tönjes, Anke | Uda, Manuela | Ulivi, Sheila | van Veldhuisen, Dirk J. | Visscher, Peter M. | Völker, Uwe | Wichmann, H.-Erich | Wiggins, Kerri L. | Willemsen, Gonneke | Yang, Tsun-Po | Zhao, Jing Hua | Zitting, Paavo | Bradley, John R. | Dedoussis, George V. | Gasparini, Paolo | Hazen, Stanley L. | Metspalu, Andres | Pirastu, Mario | Shuldiner, Alan R. | van Pelt, L. Joost | Zwaginga, Jaap-Jan | Boomsma, Dorret I. | Deary, Ian J. | Franke, Andre | Froguel, Philippe | Ganesh, Santhi K. | Jarvelin, Marjo-Riitta | Martin, Nicholas G. | Meisinger, Christa | Psaty, Bruce M. | Spector, Timothy D. | Wareham, Nicholas J. | Akkerman, Jan-Willem N. | Ciullo, Marina | Deloukas, Panos | Greinacher, Andreas | Jupe, Steve | Kamatani, Naoyuki | Khadake, Jyoti | Kooner, Jaspal S. | Penninger, Josef | Prokopenko, Inga | Stemple, Derek | Toniolo, Daniela | Wernisch, Lorenz | Sanna, Serena | Hicks, Andrew A. | Rendon, Augusto | Ferreira, Manuel A. | Ouwehand, Willem H. | Soranzo, Nicole
Nature  2011;480(7376):201-208.
Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.
doi:10.1038/nature10659
PMCID: PMC3335296  PMID: 22139419
23.  Whole genome association scan for genetic polymorphisms influencing information processing speed 
Biological psychology  2010;86(3):193-202.
Processing speed is an important cognitive function that is compromised in psychiatric illness (e.g., schizophrenia, depression) and old age; it shares genetic background with complex cognition (e.g., working memory, reasoning). To find genes influencing speed we performed a genome-wide association scan in up to three cohorts: Brisbane (mean age 16 years; N = 1659); LBC1936 (mean age 70 years, N = 992); LBC1921 (mean age 82 years, N = 307), and; HBCS (mean age 64 years, N = 1080). Meta-analysis of the common measures highlighted various suggestively significant (p < 1.21 × 10−5) SNPs and plausible candidate genes (e.g., TRIB3). A biological pathways analysis of the speed factor identified two common pathways from the KEGG database (cell junction, focal adhesion) in two cohorts, while a pathway analysis linked to the GO database revealed common pathways across pairs of speed measures (e.g., receptor binding, cellular metabolic process). These highlighted genes and pathways will be able to inform future research, including results for psychiatric disease.
doi:10.1016/j.biopsycho.2010.11.008
PMCID: PMC3319015  PMID: 21130836
Information processing speed; Cognitive ability; Genes; Biological pathways
24.  Genome-wide association studies establish that human intelligence is highly heritable and polygenic 
Molecular psychiatry  2011;16(10):996-1005.
General intelligence is an important human quantitative trait that accounts for much of the variation in diverse cognitive abilities. Individual differences in intelligence are strongly associated with many important life outcomes, including educational and occupational attainments, income, health and lifespan1,2. Data from twin and family studies are consistent with a high heritability of intelligence3, but this inference has been controversial. We conducted a genome-wide analysis of 3511 unrelated adults with data on 549 692 SNPs and detailed phenotypes on cognitive traits. We estimate that 40% of the variation in crystallized-type intelligence and 51% of the variation in fluid-type intelligence between individuals is accounted for by linkage disequilibrium between genotyped common SNP markers and unknown causal variants. These estimates provide lower bounds for the narrow-sense heritability of the traits. We partitioned genetic variation on individual chromosomes and found that, on average, longer chromosomes explain more variation. Finally, using just SNP data we predicted approximately 1% of the variance of crystallized and fluid cognitive phenotypes in an independent sample (P = 0.009 and 0.028, respectively). Our results unequivocally confirm that a substantial proportion of individual differences in human intelligence is due to genetic variation, and are consistent with many genes of small effects underlying the additive genetic influences on intelligence.
doi:10.1038/mp.2011.85
PMCID: PMC3182557  PMID: 21826061
Intelligence; genetics; GWAS; quantitative trait
25.  DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription 
Human Molecular Genetics  2012;21(12):2779-2792.
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
doi:10.1093/hmg/dds106
PMCID: PMC3363331  PMID: 22422769

Results 1-25 (44)