PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (92)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome 
Cilia  2016;5:8.
Background
Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology.
Results
Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells.
Conclusions
Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.
Electronic supplementary material
The online version of this article (doi:10.1186/s13630-016-0029-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13630-016-0029-1
PMCID: PMC4827216  PMID: 27069622
Endocrine-cerebro-osteodysplasia syndrome; ECO; Intestinal cell kinase; ICK; Short-rib thoracic dysplasia syndrome; SRTD; Ciliopathy; Ciliary defects
2.  Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders 
JAMA  2014;312(18):1880-1887.
Importance
Clinical exome sequencing (CES) is rapidly becoming a common molecular diagnostic test for individuals with rare genetic disorders.
Objective
To report on initial clinical indications for CES referrals and molecular diagnostic rates for different indications and for different test types.
Design, Setting, and Participants
Clinical exome sequencing was performed on 814 consecutive patients with undiagnosed, suspected genetic conditions at the University of California, Los Angeles, Clinical Genomics Center between January 2012 and August 2014. Clinical exome sequencing was conducted as trio-CES (both parents and their affected child sequenced simultaneously) to effectively detect de novo and compound heterozygous variants or as proband-CES (only the affected individual sequenced) when parental samples were not available.
Main outcomes and Measures
Clinical indications for CES requests, molecular diagnostic rates of CES overall and for phenotypic subgroups, and differences in molecular diagnostic rates between trio-CES and proband-CES.
Results
Of the 814 cases, the overall molecular diagnosis rate was 26% (213 of 814; 95% CI, 23%-29%). The molecular diagnosis rate for trio-CES was 31% (127 of 410 cases; 95% CI, 27%-36%) and 22% (74 of 338 cases; 95% CI, 18%-27%) for proband-CES. In cases of developmental delay in children (<5 years, n = 138), the molecular diagnosis rate was 41% (45 of 109; 95% CI, 32%-51%) for trio-CES cases and 9% (2of 23, 95% CI, 1%-28%) for proband-CES cases. The significantly higher diagnostic yield (P value = .002; odds ratio, 7.4 [95% CI, 1.6-33.1]) of trio-CES was due to the identification of de novo and compound heterozygous variants.
Conclusions and Relevance
In this sample of patients with undiagnosed, suspected genetic conditions, trio-CES was associated with higher molecular diagnostic yield than proband-CES or traditional molecular diagnostic methods. Additional studies designed to validate these findings and to explore the effect of this approach on clinical and economic outcomes are warranted.
doi:10.1001/jama.2014.14604
PMCID: PMC4278636  PMID: 25326637
3.  Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs 
PLoS Genetics  2016;12(3):e1005851.
Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.
Author Summary
Identification of the genomic regions under selection during dog domestication is extremely challenging because the demographic fluctuations associated with domestication can produce signals in polymorphism data that mimic those imposed by selective sweeps. We perform the first analysis of selection on the dog lineage that explicitly incorporates a demographic model, that by controlling for the rate of false discovery, more robustly identifies targets of selection. To do so, we conduct a selection scan using three wolf genomes representing the putative centers of dog domestication, two basal dog breeds (Basenji and Dingo), and a golden jackal as outgroup, for which we previously inferred a demographic model. We find that our demographically informed analyses filters out many signals that would be otherwise classified as putative selection signals under an empirical outlier approach. We identify 68 regions of the genome that have likely experienced positive selection. Besides identifying a number of new neurobehavioral candidate genes, our candidate regions contain genes related to lipid metabolism, including CCRN4L, which is centered in the 3rd ranked region. This suggests a previously unreported locus of dietary adaptation, potentially due to the change in diet composition as hunting efficiency increased when proto dogs began hunting alongside hunter-gatherers.
doi:10.1371/journal.pgen.1005851
PMCID: PMC4778760  PMID: 26943675
4.  Joint mouse–human phenome-wide association to test gene function and disease risk 
Nature Communications  2016;7:10464.
Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for ∼5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of ∼4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets—by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human.
Phenome-wide association is a novel method that links sequence variants to a spectrum of phenotypes and diseases. Here the authors generate detailed mouse genetic and phenome data which links their phenome-wide association study (PheWAS) of mouse to corresponding PheWAS in human.
doi:10.1038/ncomms10464
PMCID: PMC4740880  PMID: 26833085
5.  Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome 
Nature communications  2015;6:7092.
The short rib polydactyly syndromes (SRPS) are a heterogeneous group of autosomal recessive, perinatal-lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs, and poly-dactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify additional SRPS genes and further unravel the functional basis for IFT. We perform whole exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable-length, including hyperelongated, cilia, Hedgehog pathway impairment, and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation, and skeletogenesis.
doi:10.1038/ncomms8092
PMCID: PMC4470332  PMID: 26077881
6.  Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide 
Molecular Cancer  2015;14:189.
Background
Temozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 μM).
Methods
MGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 μM. Clonogenic GSC surviving 500 μM TMZ (GSC-500 μM TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC.
Results
The molecular signatures characterized an activation of protective stress responses in GSC-500 μM TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 μM TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 μM TMZ and GSC-parental to 35 μM TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489).
Conclusions
These data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT.
Electronic supplementary material
The online version of this article (doi:10.1186/s12943-015-0459-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s12943-015-0459-1
PMCID: PMC4636799  PMID: 26546412
BMP7; Glioblastoma; Temozolomide; MGMT; Glioblastoma stem cells
7.  Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients 
PLoS ONE  2015;10(10):e0141334.
Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.
doi:10.1371/journal.pone.0141334
PMCID: PMC4624638  PMID: 26506620
8.  Whole exome sequencing detects homozygosity for ABCA4 p.Arg602Trp missense mutation in a pediatric patient with rapidly progressive retinal dystrophy 
BMC Medical Genetics  2014;15:11.
Background
A pediatric patient presented with rapidly progressive vision loss, nyctalopia and retinal dystrophy. This is the first report of homozygosity for the p.Arg602Trp mutation in the ABCA4 gene. The child became legally blind within a period of 2 years.
Case presentation
An eight year-old Hispanic female presented with bilateral decreased vision following a febrile gastrointestinal illness with nausea and vomiting. Extensive workup involved pediatric infectious disease and rheumatology consultations.
Initial visual acuity was 20/60 at distance and 20/30 at near in both eyes. Rapidly progressive vision loss occurred during a 2-year period resulting in visual acuities of 20/200 at distance in both eyes. Fundus exam disclosed attenuated vessels and multiple subretinal blister-like elevations. Optical coherence tomography showed far more lesions than were clinically evident with different levels of elevation. Autofluorescence imagery showed dramatic and widespread geographic areas of atrophy. The deposits that appeared drusen-like on clinical exam were hyperfluorescent, consistent with lipofuscin deposits containing A2e (N-retinylidene-N-retinylethanolamine) indicative of RPE cell dysfunction. Electroretinography was consistent with cone dystrophy, with relative preservation of rod function. Blood analysis and rheumatology evaluation found no evidence of a diffuse post-infectious/inflammatory process. The unique and rapid progression of her subretinal blister-like lesions was documented by fluorescein angiography, optical coherence tomography, autofluorescence imagery, and fundus photography. Family pedigree history disclosed consanguinity, her parents being first cousins. DNA analysis by whole exomic sequencing revealed homozygosity of p.Arg602Trp in the ABCA4 gene.
Conclusion
The pediatric patient presented with a striking clinical appearance and dramatic rate of progression that was clinically more characteristic of an infectious or inflammatory process. This case expands the diverse range of phenotypes attributed to ABCA4 mutations and further supports the role of whole exome sequencing as a powerful new tool available to aid clinicians in establishing diagnosis for challenging cases.
doi:10.1186/1471-2350-15-11
PMCID: PMC3905103  PMID: 24444108
ABCA4 retinopathy; Pediatric; Homozygosity; Consanguinity
9.  Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia 
JAMA neurology  2014;71(10):1237-1246.
IMPORTANCE
Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established.
OBJECTIVE
To investigate the contribution of genetic disease in a population of patients with predominantly adult- and sporadic-onset cerebellar ataxia.
DESIGN, SETTING, AND PARTICIPANTS
We examined a consecutive series of 76 patients presenting to a tertiary referral center for evaluation of chronic progressive cerebellar ataxia.
MAIN OUTCOMES AND MEASURES
Next-generation exome sequencing coupled with comprehensive bioinformatic analysis, phenotypic analysis, and clinical correlation.
RESULTS
We identified clinically relevant genetic information in more than 60% of patients studied (n = 46), including diagnostic pathogenic gene variants in 21% (n = 16), a notable yield given the diverse genetics and clinical heterogeneity of the cerebellar ataxias.
CONCLUSIONS AND RELEVANCE
This study demonstrated that clinical exome sequencing in patients with adult-onset and sporadic presentations of ataxia is a high-yield test, providing a definitive diagnosis in more than one-fifth of patients and suggesting a potential diagnosis in more than one-third to guide additional phenotyping and diagnostic evaluation. Therefore, clinical exome sequencing is an appropriate consideration in the routine genetic evaluation of all patients presenting with chronic progressive cerebellar ataxia.
doi:10.1001/jamaneurol.2014.1944
PMCID: PMC4324730  PMID: 25133958
10.  Identification of somatic and germline mutations using whole exome sequencing of congenital acute lymphoblastic leukemia 
BMC Cancer  2013;13:55.
Background
Acute lymphoblastic leukemia (ALL) diagnosed within the first month of life is classified as congenital ALL and has a significantly worse outcome than ALL diagnosed in older children. This suggests that congenital ALL is a biologically different disease, and thus may be caused by a distinct set of mutations. To understand the somatic and germline mutations contributing to congenital ALL, the protein-coding regions in the genome were captured and whole-exome sequencing was employed for the identification of single-nucleotide variants and small insertion and deletions in the germlines as well as the primary tumors of four patients with congenital ALL.
Methods
Exome sequencing was performed on Illumina GAIIx or HiSeq 2000 (Illumina, San Diego, California). Reads were aligned to the human reference genome and the Genome Analysis Toolkit was used for variant calling. An in-house developed Ensembl-based variant annotator was used to richly annotate each variant.
Results
There were 1–3 somatic, protein-damaging mutations per ALL, including a novel mutation in Sonic Hedgehog. Additionally, there were many germline mutations in genes known to be associated with cancer predisposition, as well as genes involved in DNA repair.
Conclusion
This study is the first to comprehensively characterize the germline and somatic mutational profile of all protein-coding genes patients with congenital ALL. These findings identify potentially important therapeutic targets, as well as insight into possible cancer predisposition genes.
doi:10.1186/1471-2407-13-55
PMCID: PMC3573941  PMID: 23379653
Pediatric leukemia; Congenital acute lymphoblastic leukemia; Exome sequencing
11.  Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation 
Human Molecular Genetics  2014;23(13):3481-3489.
Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism.
doi:10.1093/hmg/ddu056
PMCID: PMC4049306  PMID: 24501278
12.  Assessing the necessity of confirmatory testing for exome sequencing results in a clinical molecular diagnostic laboratory 
Purpose
Sanger sequencing is currently considered the gold standard methodology for clinical molecular diagnostic testing. However, next generation sequencing (NGS) has already emerged as a much more efficient means to identify genetic variants within gene panels, the exome, or the genome. We sought to assess the accuracy of NGS variant identification in our clinical genomics laboratory with the goal of establishing a quality score threshold for confirmatory Sanger-based testing.
Methods
Confirmation data for reported results from 144 sequential clinical exome sequencing cases (94 unique variants) and an additional set of 16 variants from comparable research samples were analyzed.
Results
103 of 110 total SNVs analyzed had a quality score ≥Q500, 103 (100%) of which were confirmed by Sanger sequencing. Of the remaining 7 variants with quality scores
Conclusions
For single nucleotide variants, we predict we will be able to reduce our Sanger confirmation workload going forward by 70–80%. This serves as a proof of principle that as long as sufficient validation and quality control measures are implemented, the volume of Sanger confirmation can be reduced, alleviating a significant amount of the labor and cost burden on clinical laboratories wishing to utilize NGS technology. However, Sanger confirmation of low quality single nucleotide variants and all indels (insertions or deletions less than 10 bp) remains necessary at this time in our laboratory.
doi:10.1038/gim.2013.183
PMCID: PMC4079763  PMID: 24406459
Journal of medical genetics  2014;51(5):294-302.
Background
Constitutional DICER1 mutations have been associated with pleuropulmonary blastoma, cystic nephroma, Sertoli-Leydig tumours and multinodular goitres, while somatic DICER1 mutations have been reported in additional tumour types. Here we report a novel syndrome termed GLOW, an acronym for its core phenotypic findings, which include Global developmental delay, Lung cysts, Overgrowth and Wilms tumour caused by mutations in the RNase IIIb domain of DICER1.
Methods and results
We performed whole exome sequencing on peripheral mononuclear blood cells of an affected proband and identified a de novo missense mutation in the RNase IIIb domain of DICER1. We confirmed an additional de novo missense mutation in the same domain of an unrelated case by Sanger sequencing. These missense mutations in the RNase IIIb domain of DICER1 are suspected to affect one of four metal binding sites located within this domain. Pyrosequencing was used to determine the relative abundance of mutant alleles in various tissue types. The relative mutation abundance is highest in Wilms tumour and unaffected kidney samples when compared with blood, confirming that the mutation is mosaic. Finally, we performed bioinformatic analysis of microRNAs expressed in murine cells carrying specific Dicer1 RNase IIIb domain metal binding site-associated mutations. We have identified a subset of 3p microRNAs that are overexpressed whose target genes are over-represented in mTOR, MAPK and TGF-β signalling pathways.
Conclusions
We propose that mutations affecting the metal binding sites of the DICER1 RNase IIIb domain alter the balance of 3p and 5p microRNAs leading to deregulation of these growth signalling pathways, causing a novel human overgrowth syndrome.
doi:10.1136/jmedgenet-2013-101943
PMCID: PMC4429769  PMID: 24676357
Human Molecular Genetics  2015;24(11):3163-3171.
mRNA decay is an essential and active process that allows cells to continuously adapt gene expression to internal and environmental cues. There are two mRNA degradation pathways: 3′ to 5′ and 5′ to 3′. The DCPS protein is the scavenger mRNA decapping enzyme which functions in the last step of the 3′ end mRNA decay pathway. We have identified a DCPS pathogenic mutation in a large family with three affected individuals presenting with a novel recessive syndrome consisting of craniofacial anomalies, intellectual disability and neuromuscular defects. Using patient's primary cells, we show that this homozygous splice mutation results in a DCPS loss-of-function allele. Diagnostic biochemical analyses using various m7G cap derivatives as substrates reveal no DCPS enzymatic activity in patient's cells. Our results implicate DCPS and more generally RNA catabolism, as a critical cellular process for neurological development, normal cognition and organismal homeostasis in humans.
doi:10.1093/hmg/ddv067
PMCID: PMC4424953  PMID: 25712129
Purpose
The growth and survival of neurofibromatosis type 2 (NF2)–deficient cells are enhanced by the activation of multiple signaling pathways including ErbBs/IGF-1R/Met, PI3K/Akt, and Ras/Raf/Mek/Erk1/2. The chaperone protein HSP90 is essential for the stabilization of these signaling molecules. The aim of the study was to characterize the effect of HSP90 inhibition in various NF2-deficient models.
Experimental Design
We tested efficacy of the small-molecule NXD30001, which has been shown to be a potent HSP90 inhibitor. The antiproliferative activity of NXD30001 was tested in NF2-deficient cell lines and in human primary schwannoma and meningioma cultures in vitro. The antitumor efficacy of HSP90 inhibition in vivo was verified in two allograft models and in one NF2 transgenic model. The underlying molecular alteration was further characterized by a global transcriptome approach.
Results
NXD30001 induced degradation of client proteins in and suppressed proliferation of NF2-deficient cells. Differential expression analysis identified subsets of genes implicated in cell proliferation, cell survival, vascularization, and Schwann cell differentiation whose expression was altered by NXD30001 treatment. The results showed that NXD30001 in NF2-deficient schwannoma suppressed multiple pathways necessary for tumorigenesis.
Conclusions
HSP90 inhibition showing significant antitumor activity against NF2-related tumor cells in vitro and in vivo represents a promising option for novel NF2 therapies.
doi:10.1158/1078-0432.CCR-12-3167
PMCID: PMC4331126  PMID: 23714726
Molecular psychiatry  2009;15(10):996-1005.
Chromosome 17q11-q21 is a region of the genome likely to harbor susceptibility to autism (MIM[209850]) based on prior evidence of linkage to the disorder. This linkage is specific to multiplex pedigrees containing only male probands (MO) within the Autism Genetic Resource Exchange (AGRE). Previously, Stone et al.1 completed a high-density SNP association study of 13.7Mb within this interval, but common variant association was not sufficient to account for the linkage signal. Here we extend this SNP-based association study to complete the coverage of the 2 LOD support interval around the chromosome 17q linkage peak by testing the majority of common alleles in 284 MO trios.
CONCLUSIONS
Markers within an interval containing the gene CACNA1G were found to be associated with Autism Spectrum Disorder at a locally significant level (p = 1.9 × 10-5). While establishing CACNA1G as a novel candidate for autism, these alleles do not contribute sufficient genetic effect to explain the observed linkage, indicating there is substantial genetic heterogeneity despite the clear linkage signal. The region thus likely harbors a combination of multiple common and rare alleles contributing to the genetic risk. These data, along with previous studies of Chromosomes 5 and 7q3, suggest few if any major common risk alleles account for ASD risk under major linkage peaks in the AGRE sample. This provides important evidence for strategies to identify ASD genes, suggesting they should focus on identifying rare variants and common variants of small effect.
doi:10.1038/mp.2009.41
PMCID: PMC2889141  PMID: 19455149
Autism; Autism Spectrum Disorder; Association; Chromosome 17q; CACNA1G
While strong familial evidence supports a substantial genetic contribution to the etiology of autism spectrum disorders (ASD), specific genetic abnormalities have been identified in only a small minority of all cases. In order to comprehensively delineate the genetic components of autism including the identification of rare and common variants, overall sample sizes an order of magnitude larger than those currently under study are critically needed. This will require rapid and scalable subject assessment paradigms that obviate clinic-based time-intensive behavioral phenotyping, which is a rate-limiting step. Here, we test the accuracy of a web-based approach to autism phenotyping implemented within the Interactive Autism Network (IAN). Families who were registered with the IAN and resided near one of the three study sites were eligible for the study. One hundred seven children ascertained from this pool who were verbal, age 4–17 years, and had Social Communication Questionnaire (SCQ) scores ≥12 (a profile that characterizes a majority of ASD -affected children in IAN) underwent a clinical confirmation battery. One hundred five of the 107 children were ASD positive (98%) by clinician’s best estimate. One hundred four of these individuals (99%) were ASD positive by developmental history using the Autism Diagnostic Interview-Revised (ADI-R) and 97 (93%) were positive for ASD by developmental history and direct observational assessment (Autism Diagnostic Observational Schedule or expert clinician observation). These data support the reliability and feasibility of the IAN-implemented parent-report paradigms for the ascertainment of clinical ASD for large-scale genetic research.
doi:10.1002/ajmg.b.31103
PMCID: PMC4311721  PMID: 20552678
autism; ASD; sample size; genetic studies; rapid phenotyping paradigm
Nature genetics  2011;44(1):78-84.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
doi:10.1038/ng.1013
PMCID: PMC4310555  PMID: 22138692
Science (New York, N.Y.)  2013;343(6166):72-76.
Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA.
doi:10.1126/science.1241328
PMCID: PMC4049335  PMID: 24310612
Neurology  2014;82(23):2085-2091.
Objective:
To determine whether phosphodiesterase type 5 (PDE5) inhibition can alleviate exercise-induced skeletal muscle ischemia in boys with Duchenne muscular dystrophy (DMD).
Methods:
In 10 boys with DMD and 10 healthy age-matched male controls, we assessed exercise-induced attenuation of reflex sympathetic vasoconstriction, i.e., functional sympatholysis, a protective mechanism that matches oxygen delivery to metabolic demand. Reflex vasoconstriction was induced by simulated orthostatic stress, measured as the decrease in forearm muscle oxygenation with near-infrared spectroscopy, and performed when the forearm muscles were rested or lightly exercised with rhythmic handgrip exercise. Then, the patients underwent an open-label, dose-escalation, crossover trial with single oral doses of tadalafil or sildenafil.
Results:
The major new findings are 2-fold: first, sympatholysis is impaired in boys with DMD—producing functional muscle ischemia—despite contemporary background therapy with corticosteroids alone or in combination with cardioprotective medication. Second, PDE5 inhibition with standard clinical doses of either tadalafil or sildenafil alleviates this ischemia in a dose-dependent manner. Furthermore, PDE5 inhibition also normalizes the exercise-induced increase in skeletal muscle blood flow (measured by Doppler ultrasound), which is markedly blunted in boys with DMD.
Conclusions:
These data provide in-human proof of concept for PDE5 inhibition as a putative new therapeutic strategy for DMD.
Classification of evidence:
This study provides Class IV evidence that in patients with DMD, PDE5 inhibition restores functional sympatholysis.
doi:10.1212/WNL.0000000000000498
PMCID: PMC4118495  PMID: 24808022
PLoS Currents  2014;6:ecurrents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a.
To assess the utility of online patient self-report outcomes in a rare disease, we attempted to observe the effects of corticosteroids in delaying age at fulltime wheelchair use in Duchenne muscular dystrophy (DMD) using data from 1,057 males from DuchenneConnect, an online registry. Data collected were compared to prior natural history data in regard to age at diagnosis, mutation spectrum, and age at loss of ambulation. Because registrants reported differences in steroid and other medication usage, as well as age and ambulation status, we could explore these data for correlations with age at loss of ambulation. Using multivariate analysis, current steroid usage was the most significant and largest independent predictor of improved wheelchair-free survival. Thus, these online self-report data were sufficient to retrospectively observe that current steroid use by patients with DMD is associated with a delay in loss of ambulation. Comparing commonly used steroid drugs, deflazacort prolonged ambulation longer than prednisone (median 14 years and 13 years, respectively). Further, use of Vitamin D and Coenzyme Q10, insurance status, and age at diagnosis after 4 years were also significant, but smaller, independent predictors of longer wheelchair-free survival. Nine other common supplements were also individually tested but had lower study power. This study demonstrates the utility of DuchenneConnect data to observe therapeutic differences, and highlights needs for improvement in quality and quantity of patient-report data, which may allow exploration of drug/therapeutic practice combinations impractical to study in clinical trial settings. Further, with the low barrier to participation, we anticipate substantial growth in the dataset in the coming years.
doi:10.1371/currents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a
PMCID: PMC4207635  PMID: 25635234
Pediatric blood & cancer  2012;60(4):570-574.
Background
Gastric adenocarcinoma is a rare diagnosis in childhood. A 14-year old male patient presented with metastatic gastric adenocarcinoma, and a strong family history of colon cancer. Clinical sequencing of CDH1 and APC were negative. Whole exome sequencing was therefore applied to capture the majority of protein-coding regions for the identification of single-nucleotide variants, small insertion/deletions, and copy number abnormalities in the patient’s germline as well as primary tumor.
Materials and Methods
DNA was extracted from the patient’s blood, primary tumor, and the unaffected mother’s blood. DNA libraries were constructed and sequenced on Illumina HiSeq2000. Data were post-processed using Picard and Samtools, then analyzed with the Genome Analysis Toolkit. Variants were annotated using an in-house Ensembl-based program. Copy number was assessed using ExomeCNV.
Results
Each sample was sequenced to a mean depth of coverage of greater than 120×. A rare non-synonymous coding SNV in TP53 was identified in the germline. There were 10 somatic cancer protein-damaging variants that were not observed in the unaffected mother genome. ExomeCNV comparing tumor to the patient’s germline, identified abnormal copy number, spanning 6,946 genes.
Conclusion
We present an unusual case of Li-Fraumeni detected by whole exome sequencing. There were also likely driver somatic mutations in the gastric adenocarcinoma. These results highlight the need for more thorough and broad scale germline and cancer analyses to accurately inform patients of inherited risk to cancer and to identify somatic mutations.
doi:10.1002/pbc.24316
PMCID: PMC4170733  PMID: 23015295
exome sequencing; pediatric gastric adenocarcinoma; Li-Fraumeni Syndrome
Objectives
Congenital diarrhea disorders are a group of genetically diverse and typically autosomal recessive disorders that have yet to be well characterized phenotypically or molecularly. Diagnostic assessments are generally limited to nutritional challenges and histologic evaluation, and many subjects eventually require a prolonged course of intravenous nutrition. Here we describe next-generation sequencing techniques to investigate a child with perplexing congenital malabsorptive diarrhea and other presumably unrelated clinical problems; this method provides an alternative approach to molecular diagnosis.
Methods
We screened the diploid genome of an affected individual, using exome sequencing, for uncommon variants that have observed protein-coding consequences. We assessed the functional activity of the mutant protein, as well as its lack of expression using immunohistochemistry.
Results
Among several rare variants detected was a homozygous nonsense mutation in the catalytic domain of the proprotein convertase subtilisin/kexin type 1 gene. The mutation abolishes prohormone convertase 1/3 endoprotease activity as well as expression in the intestine. These primary genetic findings prompted a careful endocrine reevaluation of the child at 4.5 years of age, and multiple significant problems were subsequently identified consistent with the known phenotypic consequences of proprotein convertase subtilisin/kexin type 1 (PCSK1) gene mutations. Based on the molecular diagnosis, alternate medical and dietary management was implemented for diabetes insipidus, polyphagia, and micropenis.
Conclusions
Whole-exome sequencing provides a powerful diagnostic tool to clinicians managing rare genetic disorders with multiple perplexing clinical manifestations.
doi:10.1097/MPG.0b013e3182a8ae6c
PMCID: PMC4170062  PMID: 24280991
enteroendocrine cell; Neurogenin-3; PC1/3; proprotein convertases
Cell metabolism  2013;17(6):1000-1008.
SUMMARY
Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.
doi:10.1016/j.cmet.2013.04.013
PMCID: PMC3679227  PMID: 23707073

Results 1-25 (92)