PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans 
Nature Genetics  2008;40(11):1335-1340.
Many proteins necessary for sound transduction have been discovered through positional cloning of genes that cause deafness1–3. In this study, we report that mutations of LRTOMT are associated with profound non-syndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3-q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, that are detected by Western blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, novel transcripts can arise through partial or complete coalescence of genes4. We provide evidence that in the primate lineage LRTOMT evolved from the fusion of two neighboring ancestral genes, which exist as separate genes (Lrrc51and Tomt) in rodents.
doi:10.1038/ng.245
PMCID: PMC3404732  PMID: 18953341
2.  Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome 19p 
Human Genetics  2011;130(6):759-765.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08 Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.
doi:10.1007/s00439-011-1018-5
PMCID: PMC3303183  PMID: 21660509
3.  DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3 
Genetic analysis of an inbred Pakistani family PKDF280, segregating prelingual severe to profound sensorineural hearing loss, provided evidence for a DFNB locus on human chromosome 9q34.3. Co-segregation of the deafness trait with marker D9SH159 was determined by a two-point linkage analysis (LOD score 9.43 at θ=0). Two additional large families, PKDF517 and PKDF741, co-segregate recessive deafness with markers linked to the same interval. Haplotype analyses of these three families refined the interval to 3.84 Mb defined by D9S1818 (centromeric) and D9SH6 (telomeric). This interval overlaps with the previously reported DFNB33 locus whose chromosomal map position has been recently revised and assigned to a new position on chromosome 10p11.23–q21.1. The nonsyndromic deafness locus on chromosome 9q segregating in family PKDF280 was designated DFNB79. We are currently screening the 113 candidate DFNB79 genes for mutations and have excluded CACNA1B, EDF1, PTGDS, EHMT1, QSOX2, NOTCH1, MIR126 and MIR602.
doi:10.1038/ejhg.2009.121
PMCID: PMC2795002  PMID: 19603065
hereditary deafness; DFNB79; DFNB33; Pakistan; chromosome 9q34.3
4.  DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3 
Genetic analysis of inbred Pakistani family PKDF280, segregating prelingual severe to profound sensorineural hearing loss, provided evidence for a DFNB locus on human chromosome 9q34.3. Co-segregation of the deafness trait with marker D9SH159 was determined by a two-point linkage analysis (LOD score 9.43 at θ=0). Two additional large families, PKDF517 and PKDF741, co-segregate recessive deafness with markers linked to the same interval. Haplotype analyses of these three families refined the interval to 3.84 Mb defined by D9S1818 (centromeric) and D9SH6 (telomeric). This interval overlaps with the previously reported DFNB33 locus whose chromosomal map position has been recently revised and assigned to a new position on chromosome 10p11.23-q21.1. The nonsyndromic deafness locus on chromosome 9q segregating in family PKDF280 was designated DFNB79. We are currently screening the 113 candidate DFNB79 genes for mutations and have excluded CACNA1B, EDF1, PTGDS, EHMT1, QSOX2, NOTCH1, MIR126 and MIR602.
doi:10.1038/ejhg.2009.121
PMCID: PMC2795002  PMID: 19603065
hereditary deafness; DFNB79; DFNB33; Pakistan; chromosome 9q34.3
5.  Expression of cadherin 23 isoforms is not conserved: implications for a mouse model of Usher syndrome type 1D 
Molecular Vision  2009;15:1843-1857.
Purpose
We compared cadherin 23 (Cdh23) mRNA and protein variants in the inner ear and retina of wild-type and mutant mice and primates to better understand the pleiotropic effects of Cdh23 mutations, and specifically to understand the absence of retinal degeneration in Cdh23 mutant mice.
Methods
Semiquantitative real-time PCR was used to compare the level of expression of Cdh23 alternative transcripts in the inner ear and retina of wild-type and homozygous Cdh23v-6J (waltzer) mice. Antibodies generated against CDH23 isoforms were used in immunohistochemistry, immunohistology, electron microscopy, and western blot analyses of mouse and primate inner ear and retina to study the distribution of these isoforms in various cellular compartments.
Results
Cdh23 mRNA alternative splice variants were temporally and spatially regulated in the inner ear and retina. In the mature mouse retina, CDH23 isoforms were broadly expressed in various cellular compartments of the photoreceptor layer. The wild-type CDH23_V3 protein isoform, which has PDZ binding motifs but neither extracellular domains nor a transmembrane domain, localized exclusively to the outer plexiform layer of the retina containing photoreceptor cell synapses and to the synaptic region of auditory and vestibular hair cells. The longest CDH23 protein isoform, CDH23_V1, appeared by western blotting to be the only one affected by the Cdh23v-6J mutation; it was expressed in the wild-type mouse inner ear, but not in the mouse retina. However, CDH23_V1 was detected in western blot analyses of monkey and human retinas.
Conclusions
The time- and tissue-dependent expression patterns that we have shown for Cdh23 alternative transcripts suggest developmental roles and tissue-specific functions for the various transcripts. Many of these isoforms continue to be expressed in waltzer mice. The longest CDH23 isoform (CDH23_V1), however, is not expressed in mutant mice and is necessary for normal inner ear function. The longest isoform is expressed in the retinas of primates, but not detected in the mouse retina. This species difference suggests that the mouse may not be a suitable model for studying the retinitis pigmentosa phenotype of human Usher syndrome type 1D.
PMCID: PMC2743805  PMID: 19756182
6.  Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear 
Genomics  2006;89(2):197-206.
Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome.
doi:10.1016/j.ygeno.2006.09.006
PMCID: PMC1847387  PMID: 17049805
Ear; Inner; MPSS; Transcription; Genetic; ESTs, expressed sequence tags; GEO, gene expression omnibus; MoCR, mouse organ of Corti MPSS library; MoSV, mouse stria vascularis MPSS library; MoVB, mouse vestibular sensory epithelia MPSS library; MPSS, massively parallel signature sequencing; MRT, mouse reference transriptome; SAGE, serial analysis of gene expression; tpm, transcripts per million
7.  Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan 
BMC Medical Genetics  2004;5:24.
Background
Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3.
Methods
We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3.
Results
We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues.
Conclusion
Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.
doi:10.1186/1471-2350-5-24
PMCID: PMC523852  PMID: 15447792

Results 1-7 (7)