PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Interstitial Chromosome 3p14.1 Deletion due to a Maternal Insertion: Phenotype and Association with Balanced Parental Rearrangement 
Molecular Syndromology  2016;7(1):43-48.
Interstitial deletions of 3p14p12 are rare chromosome abnormalities. We present a patient with multiple congenital anomalies and a 15.4-Mb interstitial loss of chromosome 3p14p12 detected by chromosomal microarray (CMA). Our patient shared many phenotypic features with other reported cases involving the same region including prominent forehead, short palpebral fissures, hand and foot anomalies, genital abnormalities, and bilateral hearing loss. Given the clinical similarity of these cases with significant overlap of the deleted regions, it is likely that the phenotype is related to the deletion of specific genes within the region. Further molecular cytogenetic investigation revealed that our patient's rearrangement was derived from a cryptic insertion of a segment of chromosome 3p into chromosome 18q in the mother, which was balanced and therefore not visible on the mother's CMA. To our knowledge, this finding has not been previously reported. This case illustrates the importance of using molecular cytogenetics for structural analysis and parental studies. CMA is commonly the first-line study in patients with multiple congenital anomalies; however, it is not the appropriate modality to define a structural rearrangement that may be the cause of a deletion. The use of adjunct studies to define the mechanism of an identified copy number aberration has direct clinical application: to identify the underlying cause of the chromosomal abnormality and to define the recurrence risk. Additionally, this case adds to the current body of work regarding a recurrent phenotype that can be attributed to interstitial chromosome 3p deletions, which may help define the phenotypic implications of deletions in this region and support early clinical management.
doi:10.1159/000444603
PMCID: PMC4862392  PMID: 27194973
Autosomal deletion; Blepharophimosis; Developmental delay; Interstitial 3p deletion; Maternal insertion; Microphthalmia
2.  De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa 
PLoS ONE  2016;11(3):e0150944.
Background
Retinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.
Methods
Variant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.
Results and Conclusions
A total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon.
doi:10.1371/journal.pone.0150944
PMCID: PMC4786330  PMID: 26964041
3.  Whole exome sequencing detects homozygosity for ABCA4 p.Arg602Trp missense mutation in a pediatric patient with rapidly progressive retinal dystrophy 
BMC Medical Genetics  2014;15:11.
Background
A pediatric patient presented with rapidly progressive vision loss, nyctalopia and retinal dystrophy. This is the first report of homozygosity for the p.Arg602Trp mutation in the ABCA4 gene. The child became legally blind within a period of 2 years.
Case presentation
An eight year-old Hispanic female presented with bilateral decreased vision following a febrile gastrointestinal illness with nausea and vomiting. Extensive workup involved pediatric infectious disease and rheumatology consultations.
Initial visual acuity was 20/60 at distance and 20/30 at near in both eyes. Rapidly progressive vision loss occurred during a 2-year period resulting in visual acuities of 20/200 at distance in both eyes. Fundus exam disclosed attenuated vessels and multiple subretinal blister-like elevations. Optical coherence tomography showed far more lesions than were clinically evident with different levels of elevation. Autofluorescence imagery showed dramatic and widespread geographic areas of atrophy. The deposits that appeared drusen-like on clinical exam were hyperfluorescent, consistent with lipofuscin deposits containing A2e (N-retinylidene-N-retinylethanolamine) indicative of RPE cell dysfunction. Electroretinography was consistent with cone dystrophy, with relative preservation of rod function. Blood analysis and rheumatology evaluation found no evidence of a diffuse post-infectious/inflammatory process. The unique and rapid progression of her subretinal blister-like lesions was documented by fluorescein angiography, optical coherence tomography, autofluorescence imagery, and fundus photography. Family pedigree history disclosed consanguinity, her parents being first cousins. DNA analysis by whole exomic sequencing revealed homozygosity of p.Arg602Trp in the ABCA4 gene.
Conclusion
The pediatric patient presented with a striking clinical appearance and dramatic rate of progression that was clinically more characteristic of an infectious or inflammatory process. This case expands the diverse range of phenotypes attributed to ABCA4 mutations and further supports the role of whole exome sequencing as a powerful new tool available to aid clinicians in establishing diagnosis for challenging cases.
doi:10.1186/1471-2350-15-11
PMCID: PMC3905103  PMID: 24444108
ABCA4 retinopathy; Pediatric; Homozygosity; Consanguinity
4.  Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23) 
Human Molecular Genetics  2012;21(16):3647-3654.
X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson–Golabi–Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.
doi:10.1093/hmg/dds194
PMCID: PMC3406759  PMID: 22619378
5.  Molecular diagnosis of putative Stargardt disease probands by exome sequencing 
BMC Medical Genetics  2012;13:67.
Background
The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases.
Methods
We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis.
Results
Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified.
Conclusions
Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques.
doi:10.1186/1471-2350-13-67
PMCID: PMC3459799  PMID: 22863181
Stargardt Disease; Macular Degeneration; Exome; Mutation Screening; Molecular Diagnostics; ABCA4; PRPH2
6.  A Prospective, Longitudinal Study of the Impact of GJB2/GJB6 Genetic Testing on the Beliefs and Attitudes of Parents of Deaf and Hard-of-Hearing Infants 
There are limited data on the impact of incorporating genetic counseling and testing into the newborn hearing screening process. We report on results from a prospective, longitudinal study to determine the impact of genetic counseling and GJB2/GJB6 genetic testing on parental knowledge, attitudes, and beliefs about genetic testing. One hundred thirty culturally hearing parents of 93 deaf or hard-of-hearing children ages 0 – 3 years primarily identified through newborn hearing screening received pre- and post-test genetic counseling for GJB2 and GJB6. Parents completed questionnaires following pre-test counseling, and 1- and 6-months post-test result disclosure. Results indicate that following pre-test counseling all parents perceived benefits to genetic testing. While parents who received positive results continued to perceive benefits from testing, perceived benefit declined among parents who received inconclusive or negative results. Parents did not perceive genetic testing as harmful following pre-test counseling or receipt of test results. Parents who received positive test results performed better in understanding recurrence and causation of their child’s deafness and indicated greater interest in prenatal genetic testing than those who received inconclusive or negative test results. Parents felt that pediatricians and audiologists should inform parents of genetic testing availability; however, there was no consensus on timing of this discussion. Thus culturally hearing parents do not perceive genetic testing of their deaf or hard-of-hearing infants/toddlers as harmful; they feel that primary care providers should discuss genetic testing with them; and positive genetic test results with genetic counseling give rise to better understanding and perceived benefit than negative or inconclusive results.
doi:10.1002/ajmg.a.32853
PMCID: PMC2866144  PMID: 19449415
Connexin 26; Cx26; newborn hearing screening; early hearing detection and intervention; EHDI; hearing loss; hearing impairment

Results 1-6 (6)