PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A founder mutation in the PEX6 gene is responsible for increased incidence of Zellweger syndrome in a French Canadian population 
BMC Medical Genetics  2012;13:72.
Background
Zellweger syndrome (ZS) is a peroxisome biogenesis disorder due to mutations in any one of 13 PEX genes. Increased incidence of ZS has been suspected in French-Canadians of the Saguenay-Lac-St-Jean region (SLSJ) of Quebec, but this remains unsolved.
Methods
We identified 5 ZS patients from SLSJ diagnosed by peroxisome dysfunction between 1990–2010 and sequenced all coding exons of known PEX genes in one patient using Next Generation Sequencing (NGS) for diagnostic confirmation.
Results
A homozygous mutation (c.802_815del, p.[Val207_Gln294del, Val76_Gln294del]) in PEX6 was identified and then shown in 4 other patients. Parental heterozygosity was confirmed in all. Incidence of ZS was estimated to 1 in 12,191 live births, with a carrier frequency of 1 in 55. In addition, we present data suggesting that this mutation abolishes a SF2/ASF splice enhancer binding site, resulting in the use of two alternative cryptic donor splice sites and predicted to encode an internally deleted in-frame protein.
Conclusion
We report increased incidence of ZS in French-Canadians of SLSJ caused by a PEX6 founder mutation. To our knowledge, this is the highest reported incidence of ZS worldwide. These findings have implications for carrier screening and support the utility of NGS for molecular confirmation of peroxisomal disorders.
doi:10.1186/1471-2350-13-72
PMCID: PMC3483250  PMID: 22894767
Zellweger syndrome; Founder effect; Peroxisome biogenesis disorders; Next generation sequencing
2.  Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿† 
Journal of Clinical Microbiology  2011;49(6):2230-2238.
Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains.
doi:10.1128/JCM.00391-11
PMCID: PMC3122728  PMID: 21508155

Results 1-2 (2)