Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Long-Term Storage of Endocrine Tissues at −80°C Does Not Adversely Affect RNA Quality or Overall Histomorphology 
Biopreservation and Biobanking  2013;11(6):366-370.
Background: Today, no consensus exists regarding how human tissues are best preserved for long-term storage. Very low temperature storage in liquid nitrogen is often advocated as the superlative method for extended periods, but storage in −80 degrees Celsius (−80°C) freezers, while sometimes debated, is a possible alternative. RNA is the most easily degradable component of a biological sample in a molecular biology context and the quality can reliably be measured.
Aim: To investigate to what extent long-term storage of tissues in −80°C affects the RNA quality and overall histomorphology. The tissue storage period represents nearly three decades (1986–2013).
Methods: RNA extraction from 153 tissue samples with different storage periods was performed with the mirVana kit (Invitrogen). RNA integrity was assessed using an Agilent bioanalyzer to obtain RNA integrity numbers (RIN). Further, tissue representative testing using light microscopy was performed by two pathologists to assess tissue composition and morphology.
Results: RIN values were measured in all samples, showing a variability that did not correlate with the storage time of the tissues. Microscopically, all samples displayed acceptable tissue morphology regardless of storage time.
Conclusion: Long-term storage in −80°C does not adversely affect the quality of the RNA extracted from the stored tissues, and the tissue morphology is maintained to a good standard.
PMCID: PMC3901954  PMID: 24475321
2.  The VHL gene is epigenetically inactivated in pheochromocytomas and abdominal paragangliomas 
Epigenetics  2013;8(12):1347-1354.
Pheochromocytoma (PCC) and abdominal paraganglioma (PGL) are neuroendocrine tumors that present with clinical symptoms related to increased catecholamine levels. About a third of the cases are associated with constitutional mutations in pre-disposing genes, of which some may also be somatically mutated in sporadic cases. However, little is known about inactivating epigenetic events through promoter methylation in these very genes. Using bisulphite pyrosequencing we assessed the methylation density of 11 PCC/PGL disease genes in 96 tumors (83 PCCs and 13 PGLs) and 34 normal adrenal references. Gene expression levels were determined by quantitative RT-PCR. Both tumors and normal adrenal samples exhibited low methylation index (MetI) in the EGLN1 (PDH2), MAX, MEN1, NF1, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127 promoters, not exceeding 10% in any of the samples investigated. Aberrant RET promoter methylation was observed in two cases only. For the VHL gene we found increased MetI in tumors as compared with normal adrenals (57% vs. 27%; P < 0.001), in malignant vs. benign tumors (63% vs. 55%; P < 0.05), and in PGL vs. PCC (66% vs. 55%; P < 0.0005). Decreased expression of the VHL gene was observed in all tumors compared with normal adrenals (P < 0.001). VHL MetI and gene expressions were inversely correlated (R = −0.359, P < 0.0001). Our results show that the VHL gene promoter has increased methylation compared with normal adrenals (MetI > 50%) in approximately 75% of PCCs and PGLs investigated, highlighting the role of VHL in the development of these tumors.
PMCID: PMC3933494  PMID: 24149047
Pheochromocytoma; paraganglioma; VHL; DNA promoter methylation; gene expression; pyrosequencing; qRT-PCR
3.  Acquired hypermethylation of the P16INK4A promoter in abdominal paraganglioma: relation to adverse tumor phenotype and predisposing mutation 
Endocrine-Related Cancer  2013;20(1):65-78.
Recurrent alterations in promoter methylation of tumor suppressor genes (TSGs) and LINE1 (L1RE1) repeat elements were previously reported in pheochromocytoma and abdominal paraganglioma. This study was undertaken to explore CpG methylation abnormalities in an extended tumor panel and assess possible relationships between metastatic disease and mutation status. CpG methylation was quantified by bisulfite pyrosequencing for selected TSG promoters and LINE1 repeats. Methylation indices above normal reference were observed for DCR2 (TNFRSF10D), CDH1, P16 (CDKN2A), RARB, and RASSF1A. Z-scores for overall TSG, and individual TSG methylation levels, but not LINE1, were significantly correlated with metastatic disease, paraganglioma, disease predisposition, or outcome. Most strikingly, P16 hypermethylation was strongly associated with SDHB mutation as opposed to RET/MEN2, VHL/VHL, or NF1-related disease. Parallel analyses of constitutional, tumor, and metastasis DNA implicate an order of events where constitutional SDHB mutations are followed by TSG hypermethylation and 1p loss in primary tumors, later transferred to metastatic tissue. In the combined material, P16 hypermethylation was prevalent in SDHB-mutated samples and was associated with short disease-related survival. The findings verify the previously reported importance of P16 and other TSG hypermethylation in an independent tumor series. Furthermore, a constitutional SDHB mutation is proposed to predispose for an epigenetic tumor phenotype occurring before the emanation of clinically recognized malignancy.
PMCID: PMC3573842  PMID: 23154831
Molecular genetics; Gene regulation; Metastasis; Adrenal medulla; Endocrine therapy
4.  Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas 
BMC Medical Genetics  2012;13:83.
In this study we aimed to quantify tumor suppressor gene (TSG) promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP) in other tumor types.
The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels.
Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2) was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region.
The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.
PMCID: PMC3495052  PMID: 22984959
Neuroblastoma; Pyrosequencing; CIMP; BLU; CASP8; DCR2; CDH1; RASSF1A; RASSF2
5.  Frequent Promoter Hypermethylation of the APC and RASSF1A Tumour Suppressors in Parathyroid Tumours 
PLoS ONE  2010;5(3):e9472.
Parathyroid adenomas constitute the most common entity in primary hyperparathyroidism, and although recent advances have been made regarding the underlying genetic cause of these lesions, very little data on epigenetic alterations in this tumour type exists. In this study, we have determined the levels of promoter methylation regarding the four tumour suppressor genes APC, RASSF1A, p16INK4A and RAR-β in parathyroid adenomas. In addition, the levels of global methylation were assessed by analyzing LINE-1 repeats.
Methodology/Principal Findings
The sample collection consisted of 55 parathyroid tumours with known HRPT2 and/or MEN1 genotypes. Using Pyrosequencing analysis, we demonstrate APC promoter 1A and RASSF1A promoter hypermethylation in the majority of parathyroid tumours (71% and 98%, respectively). Using TaqMan qRT-PCR, all tumours analyzed displayed lower RASSF1A mRNA expression and higher levels of total APC mRNA than normal parathyroid, the latter of which was largely conferred by augmented APC 1B transcription levels. Hypermethylation of p16INK4A was demonstrated in a single adenoma, whereas RAR-β hypermethylation was not observed in any sample. Moreover, based on LINE-1 analyses, parathyroid tumours exhibited global methylation levels within the range of non-neoplastic parathyroid tissues.
The results demonstrate that APC and RASSF1A promoter hypermethylation are common events in parathyroid tumours. While RASSF1A mRNA levels were found downregulated in all tumours investigated, APC gene expression was retained through APC 1B mRNA levels. These findings suggest the involvement of the Ras signaling pathway in parathyroid tumorigenesis. Additionally, in contrast to most other human cancers, parathyroid tumours were not characterized by global hypomethylation, as parathyroid tumours exhibited LINE-1 methylation levels similar to that of normal parathyroid tissues.
PMCID: PMC2830427  PMID: 20208994

Results 1-5 (5)