Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mitochondrial DNA Haplogroups influence AIDS Progression 
AIDS (London, England)  2008;22(18):2429-2439.
Mitochondrial function plays a role in both AIDS progression and highly active antiretroviral therapy (HAART) toxicity, therefore we sought to determine whether mitochondrial (mt) DNA variation revealed novel AIDS Restriction Genes (ARGs), particularly as mtDNA single nucleotide polymorphisms (SNPs) are known to influence regulation of oxidative phosphorylation, reactive oxygen species (ROS) production, and apoptosis.
Retrospective cohort study.
We performed an association study of mtDNA haplogroups among 1833 European American HIV-1 patients from five US cohorts, the Multicenter AIDS Cohort Study (MACS), the San Francisco City Clinic Study (SFCC), Hemophilia Growth and Development Study (HGDS), the Multicenter Hemophilia Cohort Study (MHCS), and the AIDS Linked to Intravenous Experiences (ALIVE) cohort to determine whether the mtDNA haplogroup correlated with AIDS progression rate.
MtDNA haplogroups J and U5a were elevated among HIV-1 infected people who display accelerated progression to AIDS and death. Haplogroups Uk, H3, and IWX appeared to be highly protective against AIDS progression.
The associations found in our study appear to support a functional explanation by which mtDNA variation among haplogroups influencing ATP production, ROS generation, and apoptosis is correlated to AIDS disease progression, however repeating these results in cohorts with different ethnic backgrounds would be informative. These data suggest that mitochondrial genes are important indicators of AIDS disease progression in HIV-1 infected persons.
PMCID: PMC2699618  PMID: 19005266
Mitochondria; AIDS; HIV-1; apoptosis; disease
2.  Association of DC-SIGN Promoter Polymorphism with Increased Risk for Parenteral, but Not Mucosal, Acquisition of Human Immunodeficiency Virus Type 1 Infection 
Journal of Virology  2004;78(24):14053-14056.
There is considerable debate about the fundamental mechanisms that underlie and restrict acquisition of human immunodeficiency virus type 1 (HIV-1) infection. In light of recent studies demonstrating the ability of C type lectins to facilitate infection with HIV-1, we explored the potential relationship between polymorphisms in the DC-SIGN promoter and risk for acquisition of HIV-1 according to route of infection. Using samples obtained from 1,611 European-American participants at risk for parenteral (n = 713) or mucosal (n = 898) infection, we identified single-nucleotide polymorphisms in the DC-SIGN promoter using single-strand conformation polymorphism. Individuals at risk for parenterally acquired infection who had −336C were more susceptible to infection than were persons with −336T (odds ratio = 1.87, P = 0.001). This association was not observed in those at risk for mucosally acquired infection. A potential role for DC-SIGN specific to systemic acquisition and dissemination of infection is suggested.
PMCID: PMC533922  PMID: 15564514
3.  Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes 
BMC Medical Genetics  2004;5:12.
A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418) using the Collaborative Linkage Study of Autism (CLSA) chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1) in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817), their tissue expression patterns, and likely biological relevance to autism.
Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs) and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test.
As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p < 0.05 suggesting that none of these genes is associated with autism susceptibility in this subset of chromosome 7-linked families. However, with LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02) and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012).
NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism.
PMCID: PMC420465  PMID: 15128462
4.  The Case for Selection at CCR5-Δ32 
PLoS Biology  2005;3(11):e378.
The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Δ32) allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Δ32 arose within the past 1,000 y and rose to its present high frequency (5%–14%) in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Δ32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Δ32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5), they imply that the pattern of genetic variation seen atCCR5-Δ32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.
Sabeti and colleagues use dense genetic maps to show that the HIV-resistance CCR5-Δ32 allele is more than 5,000 years old and is likely to have been under mainly neutral selection.
PMCID: PMC1275522  PMID: 16248677

Results 1-4 (4)