PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (139)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
3.  Age associated changes in gene expression in human brain and isolated neurons 
Neurobiology of aging  2012;34(4):1199-1209.
Previous studies have suggested that there are genes whose expression levels are associated with chronological age. However, which genes show consistent age association across studies, and which are specific to a given organism or tissue remains unresolved. Here, we re-assessed this question using two independently ascertained series of human brain samples from two anatomical regions, the frontal lobe of the cerebral cortex and cerebellum. Using microarrays to estimate gene expression, we found sixty associations between expression and chronological age that were statistically significant and were replicated in both series in at least one tissue. There were a greater number of significant associations in the frontal cortex compared to the cerebellum. We then repeated the analysis in a subset of samples using laser capture microdissection to isolate purkinje neurons from the cerebellum. We were able to replicate five gene associations from either frontal cortex or cerebellum in the Purkinje cell dataset, suggesting that there is a subset of genes have robust changes withs aging. Of these, the most consistent and strongest association was with expression of RHBDL3, a rhomboid protease family member. We confirmed several hits using an independent technique (qRT-PCR) and in an independent published sample series that used a different array platform. We also interrogated larger patterns of age related gene expression using weighted gene correlation network analysis (WGCNA). We found several modules that showed significant associations with chronological age and, of these, several that showed negative associations were enriched for genes encoding components of mitochondria. Overall, our results show that there is a distinct and reproducible gene signature for aging in the human brain.
doi:10.1016/j.neurobiolaging.2012.10.021
PMCID: PMC3545059  PMID: 23177596
4.  Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14 015 stroke cases and pooled analysis of primary biomarker data from up to 60 883 individuals 
Background At the APOE gene, encoding apolipoprotein E, genotypes of the ε2/ε3/ε4 alleles associated with higher LDL-cholesterol (LDL-C) levels are also associated with higher coronary risk. However, the association of APOE genotype with other cardiovascular biomarkers and risk of ischaemic stroke is less clear. We evaluated the association of APOE genotype with risk of ischaemic stroke and assessed whether the observed effect was consistent with the effects of APOE genotype on LDL-C or other lipids and biomarkers of cardiovascular risk.
Methods We conducted a systematic review of published and unpublished studies reporting on APOE genotype and ischaemic stroke. We pooled 41 studies (with a total of 9027 cases and 61 730 controls) using a Bayesian meta-analysis to calculate the odds ratios (ORs) for ischaemic stroke with APOE genotype. To better evaluate potential mechanisms for any observed effect, we also conducted a pooled analysis of primary data using 16 studies (up to 60 883 individuals) of European ancestry. We evaluated the association of APOE genotype with lipids, other circulating biomarkers of cardiovascular risk and carotid intima-media thickness (C-IMT).
Results The ORs for association of APOE genotypes with ischaemic stroke were: 1.09 (95% credible intervals (CrI): 0.84–1.43) for ε2/ε2; 0.85 (95% CrI: 0.78–0.92) for ε2/ε3; 1.05 (95% CrI: 0.89–1.24) for ε2/ε4; 1.05 (95% CrI: 0.99–1.12) for ε3/ε4; and 1.12 (95% CrI: 0.94–1.33) for ε4/ε4 using the ε3/ε3 genotype as the reference group. A regression analysis that investigated the effect of LDL-C (using APOE as the instrument) on ischaemic stroke showed a positive dose-response association with an OR of 1.33 (95% CrI: 1.17, 1.52) per 1 mmol/l increase in LDL-C. In the separate pooled analysis, APOE genotype was linearly and positively associated with levels of LDL-C (P-trend: 2 × 10−152), apolipoprotein B (P-trend: 8.7 × 10−06) and C-IMT (P-trend: 0.001), and negatively and linearly associated with apolipoprotein E (P-trend: 6 × 10−26) and HDL-C (P-trend: 1.6 × 10−12). Associations with lipoprotein(a), C-reactive protein and triglycerides were non-linear.
Conclusions In people of European ancestry, APOE genotype showed a positive dose-response association with LDL-C, C-IMT and ischaemic stroke. However, the association of APOE ε2/ε2 genotype with ischaemic stroke requires further investigation. This cross-domain concordance supports a causal role of LDL-C on ischaemic stroke.
doi:10.1093/ije/dyt034
PMCID: PMC3619955  PMID: 23569189
Stroke; lipids; apolipoprotein E; cardiovascular disease; systematic review; meta-analysis; biomarkers
5.  A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease 
Holmans, Peter | Moskvina, Valentina | Jones, Lesley | Sharma, Manu | Vedernikov, Alexey | Buchel, Finja | Sadd, Mohamad | Bras, Jose M. | Bettella, Francesco | Nicolaou, Nayia | Simón-Sánchez, Javier | Mittag, Florian | Gibbs, J. Raphael | Schulte, Claudia | Durr, Alexandra | Guerreiro, Rita | Hernandez, Dena | Brice, Alexis | Stefánsson, Hreinn | Majamaa, Kari | Gasser, Thomas | Heutink, Peter | Wood, Nicholas W. | Martinez, Maria | Singleton, Andrew B. | Nalls, Michael A. | Hardy, John | Morris, Huw R. | Williams, Nigel M. | Arepalli, Sampath | Barker, Roger | Barrett, Jeffrey | Ben-Shlomo, Yoav | Berendse, Henk W. | Berg, Daniela | Bhatia, Kailash | de Bie, Rob M.A. | Biffi, Alessandro | Bloem, Bas | Brice, Alexis | Bochdanovits, Zoltan | Bonin, Michael | Bras, Jose M. | Brockmann, Kathrin | Brooks, Janet | Burn, David J. | Charlesworth, Gavin | Chen, Honglei | Chinnery, Patrick F. | Chong, Sean | Clarke, Carl E. | Cookson, Mark R. | Cooper, Jonathan M. | Corvol, Jen-Christophe | Counsell, Carl | Damier, Philippe | Dartigues, Jean Francois | Deloukas, Panagiotis | Deuschl, Günther | Dexter, David T. | van Dijk, Karin D. | Dillman, Allissa | Durif, Frank | Durr, Alexandra | Edkins, Sarah | Evans, Jonathan R. | Foltynie, Thomas | Gao, Jianjun | Gardner, Michelle | Gasser, Thomas | Gibbs, J. Raphael | Goate, Alison | Gray, Emma | Guerreiro, Rita | Gústafsson, Ómar | Hardy, John | Harris, Clare | Hernandez, Dena G. | Heutink, Peter | van Hilten, Jacobus J. | Hofman, Albert | Hollenbeck, Albert | Holmans, Peter | Holton, Janice | Hu, Michele | Huber, Heiko | Hudson, Gavin | Hunt, Sarah E. | Huttenlocher, Johanna | Illig, Thomas | Langford, Cordelia | Lees, Andrew | Lesage, Suzanne | Lichtner, Peter | Limousin, Patricia | Lopez, Grisel | Lorenz, Delia | Martinez, Maria | McNeill, Alisdair | Moorby, Catriona | Moore, Matthew | Morris, Huw | Morrison, Karen E. | Moskvina, Valentina | Mudanohwo, Ese | Nalls, Michael A. | Pearson, Justin | Perlmutter, Joel S. | Pétursson, Hjörvar | Plagnol, Vincent | Pollak, Pierre | Post, Bart | Potter, Simon | Ravina, Bernard | Revesz, Tamas | Riess, Olaf | Rivadeneira, Fernando | Rizzu, Patrizia | Ryten, Mina | Saad, Mohamad | Sawcer, Stephen | Schapira, Anthony | Scheffer, Hans | Sharma, Manu | Shaw, Karen | Sheerin, Una-Marie | Shoulson, Ira | Schulte, Claudia | Sidransky, Ellen | Simón-Sánchez, Javier | Singleton, Andrew B. | Smith, Colin | Stefánsson, Hreinn | Stefánsson, Kári | Steinberg, Stacy | Stockton, Joanna D. | Sveinbjornsdottir, Sigurlaug | Talbot, Kevin | Tanner, Carlie M. | Tashakkori-Ghanbaria, Avazeh | Tison, François | Trabzuni, Daniah | Traynor, Bryan J. | Uitterlinden, André G. | Velseboer, Daan | Vidailhet, Marie | Walker, Robert | van de Warrenburg, Bart | Wickremaratchi, Mirdhu | Williams, Nigel | Williams-Gray, Caroline H. | Winder-Rhodes, Sophie | Wood, Nicholas
Human Molecular Genetics  2012;22(5):1039-1049.
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated.
doi:10.1093/hmg/dds492
PMCID: PMC3561909  PMID: 23223016
6.  Initial Assessment of the Pathogenic Mechanisms of the recently identified Alzheimer Risk Loci 
Annals of human genetics  2013;77(2):85-105.
SUMMARY
Recent genome wide association studies have identified CLU, CR1, ABCA7 BIN1, PICALM and MS4A6A/MS4A6E in addition to the long established APOE, as loci for Alzheimer’s disease. We have systematically examined each of these loci to assess whether common coding variability contributes to the risk of disease. We have also assessed the regional expression of all the genes in the brain and whether there is evidence of an eQTL explaining the risk. In agreement with other studies we find that coding variability may explain the ABCA7 association, but common coding variability does not explain any of the other loci. We were not able to show that any of the loci had eQTLs within the power of this study. Furthermore the regional expression of each of the loci did not match the pattern of brain regional distribution in Alzheimer pathology.
Although these results are mainly negative, they allow us to start defining more realistic alternative approaches to determine the role of all the genetic loci involved in Alzheimer’s disease.
doi:10.1111/ahg.12000
PMCID: PMC3578142  PMID: 23360175
Alzheimer’s disease; genetic risk; GWAS
7.  The Parkinson’s disease genes Fbxo7 and Parkin interact to mediate mitophagy 
Nature neuroscience  2013;16(9):10.1038/nn.3489.
Compelling evidence indicates that two autosomal recessive Parkinson’s disease genes, PINK1 (PARK6) and Parkin (PARK2), co-operate to mediate the autophagic clearance of damaged mitochondria (mitophagy). Mutations in the F-box domain containing protein Fbxo7 (PARK15) also cause early onset autosomal recessive Parkinson’s disease by an unknown mechanism. Here we show that Fbxo7 participates in mitochondrial maintenance through direct interaction with PINK1 and Parkin and plays a role in Parkin-mediated mitophagy. Cells with reduced Fbxo7 expression show deficiencies in Parkin mitochondrial translocation, ubiquitination of mitofusin 1 and mitophagy. In Drosophila, ectopic overexpression of Fbxo7 rescued loss of Parkin supporting a functional relationship between the two proteins. Parkinson’s disease-causing mutations in Fbxo7 interfere with this process, emphasising the importance of mitochondrial dysfunction in Parkinson’s disease pathogenesis.
doi:10.1038/nn.3489
PMCID: PMC3827746  PMID: 23933751
Fbxo7; Parkin; PINK1; mitofusin 1; mitophagy; Drosophila; Parkinson’s disease
8.  Whole Genome Analyses Suggest Ischemic Stroke and Heart Disease Share an Association With Polymorphisms on Chromosome 9p21 
Background and Purpose
Recently independent studies reported an association between coronary heart disease and single-nucleotide polymorphisms (SNPs) located at chromosome 9p21, near CDKN2A and CDKN2B genes. Given that stroke is a common complication after myocardial infarction, we investigated if the same SNPs were associated with ischemic stroke in our population.
Methods
We recently initiated a whole genome analysis of ischemic stroke and published the first stage of a case control study using >400 000 SNPs from Illumina Infinium Human-1 and HumanHap300 assays. We focused on SNPs recently associated with heart disease by Helgadottir and colleagues and SNPs from the same haplotype block.
Results
In analyses both unadjusted and adjusted for stroke risk factors, significant associations with ischemic stroke were observed for SNPs from the same haplotype block previously associated with myocardial infarction. Significant association was also seen between disease and haplotypes involving these SNPs, both with and without adjustment for stroke risk factors (odd ratios: 1.01 to 2.65).
Conclusions
These data are important for 3 reasons: first, they suggest a genetic association for stroke; second, they suggest that this association shares pathogenic mechanisms with heart disease and diabetes; and third, they illustrate, that public release of data can facilitate rapid risk locus discovery.
doi:10.1161/STROKEAHA.107.502963
PMCID: PMC3932672  PMID: 18340101
ischemic stroke; genetics; heart disease; diabetes
9.  Kohlschütter–Tönz Syndrome: Mutations in ROGDI and Evidence of Genetic Heterogeneity 
Human mutation  2012;34(2):296-300.
Kohlschütter–Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by amelogenesis imperfecta, psychomotor delay or regression and seizures starting early in childhood. KTS was established as a distinct clinical entity after the first report by Kohlschütter in 1974, and to date, only a total of 20 pedigrees have been reported. The genetic etiology of KTS remained elusive until recently when mutations in ROGDI were independently identified in three unrelated families and in five likely related Druze families. Herein, we report a clinical and genetic study of 10 KTS families. By using a combination of whole exome sequencing, linkage analysis, and Sanger sequencing, we identify novel homozygous or compound heterozygous ROGDI mutations in five families, all presenting with a typical KTS phenotype. The other families, mostly presenting with additional atypical features, were negative for ROGDI mutations, suggesting genetic heterogeneity of atypical forms of the disease.
doi:10.1002/humu.22241
PMCID: PMC3902979  PMID: 23086778
Kohlschütter–Tönz; ROGDI; amelogenesis imperfecta; epilepsy
10.  TDP-43 pathology in a patient carrying G2019S LRRK2 mutation and a novel p.Q124E MAPT☆ 
Neurobiology of Aging  2013;34(12):2889.e5-2889.e9.
Leucine-rich repeat kinase 2 (LRRK2) mutation is the most common cause of genetic-related parkinsonism and is usually associated with Lewy body pathology; however, tau, α-synuclein, and ubiquitin pathologies have also been reported. We report the case of a patient carrying the LRRK2 G2019S mutation and a novel heterozygous variant c.370C>G, p.Q124E in exon 4 of the microtubule-associated protein tau (MAPT). The patient developed parkinsonism with good levodopa response in her 70s. Neuropathological analysis revealed nigral degeneration and Alzheimer-type tau pathology without Lewy bodies. Immunohistochemical staining using phospho-TDP-43 antibodies identified occasional TDP-43 pathology in the hippocampus, temporal neocortex, striatum, and substantia nigra. However, TDP-43 pathology was not identified in another 4 archival LRRK2 G2019S cases with Lewy body pathology available in the Queen Square Brain Bank. Among other published cases of patients carrying LRRK2 G2019S mutation, only 3 were reportedly evaluated for TDP-43 pathology, and the results were negative. The role of the MAPT variant in the clinical and pathological manifestation in LRRK2 cases remains to be determined.
doi:10.1016/j.neurobiolaging.2013.04.011
PMCID: PMC3906605  PMID: 23664753
LRRK2; MAPT; Parkinson's disease; TDP-43; tau
11.  Pathogenic Parkinson’s disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation☆ 
Highlights
•Mutations in the ROC, COR and Kinase domain of LRRK2 alter the autophagic response to starvation.•LC3-I/II ratio following starvation is altered by mutations, as well as p62 and WIPI2 positive puncta.•This occurs independently of any alteration in downstream targets of mTORC1.
LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.
doi:10.1016/j.bbrc.2013.10.159
PMCID: PMC3858825  PMID: 24211199
LRRK2, leucine rich repeat kinase 2; ROC, ras of complex proteins; COR, C-terminal of ROC; PD, Parkinson’s disease; ICC, Immunocytochemistry; LRRK2; Parkinson’s disease; Autophagy; Lysosomes; Signaling pathways
12.  Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease 
Neurology  2013;80(22):2042-2048.
Objectives:
Previous associations between mitochondrial DNA (mtDNA) and idiopathic Parkinson disease (PD) have been inconsistent and contradictory. Our aim was to resolve these inconsistencies and determine whether mtDNA has a significant role in the risk of developing PD.
Methods:
Two-stage genetic association study of 138 common mtDNA variants in 3,074 PD cases and 5,659 ethnically matched controls followed by meta-analysis of 6,140 PD cases and 13,280 controls.
Results:
In the association study, m.2158T>C and m.11251A>G were associated with a reduced risk of PD in both the discovery and replication cohorts. None of the common European mtDNA haplogroups were consistently associated with PD, but pooling of discovery and replication cohorts revealed a protective association with “super-haplogroup” JT. In the meta-analysis, there was a reduced risk of PD with haplogroups J, K, and T and super-haplogroup JT, and an increase in the risk of PD with super-haplogroup H.
Conclusions:
In a 2-stage association study of mtDNA variants and PD, we confirm the reduced risk of PD with super-haplogroup JT and resolve this at the J1b level. Meta-analysis explains the previous inconsistent associations that likely arise through sampling effects. The reduced risk of PD with haplogroups J, K, and T is mirrored by an increased risk of PD in super-haplogroup HV, which increases survival after sepsis. Antagonistic pleiotropy between mtDNA haplogroups may thus be shaping the genetic landscape in humans, leading to an increased risk of PD in later life.
doi:10.1212/WNL.0b013e318294b434
PMCID: PMC3716399  PMID: 23645593
13.  A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies 
JAMA neurology  2013;70(6):10.1001/jamaneurol.2013.1925.
Importance
While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders.
Objective
To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB).
Design
We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity.
Setting
Eleven centers from sites around the world performing genotyping.
Participants
Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity.
Main Outcome Measures
Frequency of GBA1 mutations in cases and controls.
Results
We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78–14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53–15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P<.001), with higher disease severity scores.
Conclusions and Relevance
Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.
doi:10.1001/jamaneurol.2013.1925
PMCID: PMC3841974  PMID: 23588557
14.  Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson's disease 
Human Molecular Genetics  2012;21(22):4996-5009.
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17–38, P = 8.08E − 08) phenotypic variance associated with all types of PD, 15% (95% CI −0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17–44, P = 1.34E − 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered.
doi:10.1093/hmg/dds335
PMCID: PMC3576713  PMID: 22892372
16.  Molecular nexopathies: a new paradigm of neurodegenerative disease 
Trends in Neurosciences  2013;36(10):561-569.
Highlights
•How proteinopathies damage brain networks is a key issue in neurodegenerative disease.•Here, we outline a solution based on the concept of ‘molecular nexopathies’.•The concept is founded on specific interactions of network and protein properties.•This new paradigm has far-reaching biological and clinical implications.
Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with ‘molecular nexopathies’: specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology.
doi:10.1016/j.tins.2013.06.007
PMCID: PMC3794159  PMID: 23876425
neurodegeneration; dementia; neural network; nexopathy
17.  A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids☆ 
Journal of the Neurological Sciences  2013;332(1-2):141-144.
We report a family with a novel CSF1R mutation causing hereditary diffuse leucoencephalopathy with axonal spheroids. Family members presented with neuropsychiatric and behavioural symptoms, with subsequent development of motor symptoms and gait disturbance. MRI brain showed extensive white matter change with a frontal predominance and associated atrophy in two members of the family. Genetic testing revealed a novel mutation c.2342C > T (p.A781V) in the CSF1R gene in two brothers of the family. This report highlights the difficulties in diagnosing HDLS and discusses the indications for testing for mutations in the CSF1R gene.
doi:10.1016/j.jns.2013.06.007
PMCID: PMC3750216  PMID: 23816250
CSF1R; HDLS; Leucoencephalopathy; Dementia; Frontal dementia; Behavioural change
18.  Genetic analysis of neurodegeneration.. the end game 
Molecular Neurodegeneration  2013;8(Suppl 1):O12.
doi:10.1186/1750-1326-8-S1-O12
PMCID: PMC3846820
19.  Screening for C9ORF72 repeat expansion in FTLD 
Neurobiology of aging  2012;33(8):1850.e1-1850.11.
In the present study we aimed to determine the prevalence of C9ORF72 GGGGCC hexanucleotide expansion in our cohort of 53 FTLD patients and 174 neurologically normal controls. We identified the hexanucleotide repeat, in the pathogenic range, in 4 (2 bv-FTD and 2 FTD-ALS) out of 53 patients and one neurologically normal control. Interestingly, two of the C9ORF72 expansion carriers also carried two novel missense mutations in GRN (Y294C) and in PSEN-2 (I146V). Further, one of the C9ORF72 expansion carriers, for whom pathology was available, showed amyloid plaques and tangles in addition to TDP-43 pathology. In summary, our findings suggest that the hexanucleotide expansion is probably associated with ALS, FTD or FTD-ALS and occasional comorbid conditions such as Alzheimer’s disease. These findings are novel and need to be cautiously interpreted and most importantly replicated in larger numbers of samples.
doi:10.1016/j.neurobiolaging.2012.02.017
PMCID: PMC3743244  PMID: 22459598
FTLD; bv-FTD; FTD-ALS; C9ORF72; GRN; PSEN-2; Alzheimer’s disease
20.  Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus 
PLoS ONE  2013;8(8):e70724.
Association studies have identified several signals at the LRRK2 locus for Parkinson's disease (PD), Crohn's disease (CD) and leprosy. However, little is known about the molecular mechanisms mediating these effects. To further characterize this locus, we fine-mapped the risk association in 5,802 PD and 5,556 controls using a dense genotyping array (ImmunoChip). Using samples from 134 post-mortem control adult human brains (UK Human Brain Expression Consortium), where up to ten brain regions were available per individual, we studied the regional variation, splicing and regulation of LRRK2. We found convincing evidence for a common variant PD association located outside of the LRRK2 protein coding region (rs117762348, A>G, P = 2.56×10−8, case/control MAF 0.083/0.074, odds ratio 0.86 for the minor allele with 95% confidence interval [0.80–0.91]). We show that mRNA expression levels are highest in cortical regions and lowest in cerebellum. We find an exon quantitative trait locus (QTL) in brain samples that localizes to exons 32–33 and investigate the molecular basis of this eQTL using RNA-Seq data in n = 8 brain samples. The genotype underlying this eQTL is in strong linkage disequilibrium with the CD associated non-synonymous SNP rs3761863 (M2397T). We found two additional QTLs in liver and monocyte samples but none of these explained the common variant PD association at rs117762348. Our results characterize the LRRK2 locus, and highlight the importance and difficulties of fine-mapping and integration of multiple datasets to delineate pathogenic variants and thus develop an understanding of disease mechanisms.
doi:10.1371/journal.pone.0070724
PMCID: PMC3742662  PMID: 23967090
21.  Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts 
Neuroscience letters  2012;523(1):35-38.
Several causative genes have been identified for both dystonia-parkinsonism and neurodegeneration with brain iron accumulation (NBIA), yet many patients do not have mutations in any of the known genes. Mutations in the ATP13A2 lead to Kufor Rakeb disease, a form of autosomal recessive juvenile parkinsonism that also features oromandibular dystonia. More recently, evidence of iron deposition in the caudate and putamen have been reported in patients with ATP13A2 mutations. We set out to determine the frequency of ATP13A2 mutations in cohorts of idiopathic NBIA and dystonia-parkinsonism. We screened for large deletions using whole genome arrays, and sequenced the entire coding region in 92 cases of NBIA and 76 cases of dystonia-parkinsonism. A number of coding and non-coding sequence variants were identified in a heterozygous state, but none were predicted to be pathogenic based on in silico analyses. Our results indicate that ATP13A2 mutations are a rare cause of both NBIA and dystonia-parkinsonism.
doi:10.1016/j.neulet.2012.06.036
PMCID: PMC3619445  PMID: 22743658
Neurodegeneration; Iron; NBIA; Kufor Rakeb; ATP13A2; Dystonia; Parkinsonism
23.  TREM2 Variants in Alzheimer's Disease 
The New England journal of medicine  2012;368(2):117-127.
BACKGROUND
Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia.
METHODS
We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice.
RESULTS
We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease.
CONCLUSIONS
Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.)
doi:10.1056/NEJMoa1211851
PMCID: PMC3631573  PMID: 23150934
24.  Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain 
Neurobiology of Disease  2012;47(1):20-28.
Genome wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other trait studied.
doi:10.1016/j.nbd.2012.03.020
PMCID: PMC3358430  PMID: 22433082
25.  Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA) 
Current Neuropharmacology  2013;11(1):59-79.
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic.
Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.
doi:10.2174/157015913804999469
PMCID: PMC3580793  PMID: 23814539
Ceramide; dystonia; iron; NBIA; parkinsonism; MPAN; PKAN; PLA2G6.

Results 1-25 (139)