PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  6 Minute Walk Test in Duchenne MD Patients with Different Mutations: 12 Month Changes 
PLoS ONE  2014;9(1):e83400.
Objective
In the last few years some of the therapeutical approaches for Duchenne muscular dystrophy (DMD) are specifically targeting distinct groups of mutations, such as deletions eligible for skipping of individual exons. The aim of this observational study was to establish whether patients with distinct groups of mutations have different profiles of changes on the 6 minute walk test (6MWT) over a 12 month period.
Methods
The 6MWT was performed in 191 ambulant DMD boys at baseline and 12 months later. The results were analysed using a test for heterogeneity in order to establish possible differences among different types of mutations (deletions, duplications, point mutations) and among subgroups of deletions eligible to skip individual exons.
Results
At baseline the 6MWD ranged between 180 and 560,80 metres (mean 378,06, SD 74,13). The 12 month changes ranged between −325 and 175 (mean −10.8 meters, SD 69.2). Although boys with duplications had better results than those with the other types of mutations, the difference was not significant.
Similarly, boys eligible for skipping of the exon 44 had better baseline results and less drastic changes than those eligible for skipping exon 45 or 53, but the difference was not significant.
Conclusions
even if there are some differences among subgroups, the mean 12 month changes in each subgroup were all within a narrow Range: from the mean of the whole DMD cohort. This information will be of help at the time of designing clinical trials with small numbers of eligible patients.
doi:10.1371/journal.pone.0083400
PMCID: PMC3885414  PMID: 24421885
2.  Antisense-Induced Messenger Depletion Corrects a COL6A2 Dominant Mutation in Ullrich Myopathy 
Human Gene Therapy  2012;23(12):1313-1318.
Abstract
Collagen VI gene mutations cause Ullrich and Bethlem muscular dystrophies. Pathogenic mutations frequently have a dominant negative effect, with defects in collagen VI chain secretion and assembly. It is agreed that, conversely, collagen VI haploinsufficiency has no pathological consequences. Thus, RNA-targeting approaches aimed at preferentially inactivating the mutated COL6 messenger may represent a promising therapeutic strategy. By in vitro studies we obtained the preferential depletion of the mutated COL6A2 messenger, by targeting a common single-nucleotide polymorphism (SNP), cistronic with a dominant COL6A2 mutation. We used a 2′-O-methyl phosphorothioate (2′OMePS) antisense oligonucleotide covering the SNP within exon 3, which is out of frame. Exon 3 skipping has the effect of depleting the mutated transcript via RNA nonsense-mediated decay, recovering the correct collagen VI secretion and restoring the ability to form an interconnected microfilament network into the extracellular matrix. This novel RNA modulation approach to correcting dominant mutations may represent a therapeutic strategy potentially applicable to a great variety of mutations and diseases.
Gualandi and colleagues deplete defective mRNA transcripts of the gene encoding one of the collagen VI α chains (COL6A2) by using an antisense oligonucleotide covering a single-nucleotide polymorphism to achieve skipping of COL6A2 exon 3. Exon 3 skipping was confirmed and resulted in reduced expression of the mutated transcript via RNA nonsense-mediated decay. Histology and electron microscopy studies showed recovery of functional secretion of collagen VI as well as integration of collagen VI into the extracellular matrix.
doi:10.1089/hum.2012.109
PMCID: PMC3523246  PMID: 22992134
3.  Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets 
PLoS ONE  2013;8(10):e77430.
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
doi:10.1371/journal.pone.0077430
PMCID: PMC3819505  PMID: 24223098
4.  Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy 
Neurology  2012;79(2):159-162.
Objective:
To test the effect of the single nucleotide polymorphism −66 T>G (rs28357094) in the osteopontin gene (SPP1) on functional measures over 12 months in Duchenne muscular dystrophy (DMD).
Methods:
This study was conducted on a cohort of ambulatory patients with DMD from a network of Italian neuromuscular centers, evaluated longitudinally with the North Star Ambulatory Assessment (NSAA) and the 6-Minute Walk Test (6MWT) at study entry and after 12 months. Genotype at rs28357094 was determined after completion of the clinical evaluations. Patients were stratified in 2 groups according to a dominant model (TT homozygotes vs TG heterozygotes and GG homozygotes) and clinical data were retrospectively compared between groups.
Results:
Eighty patients were selected (age 4.1–19.3 years; mean 8.3 ± 2.7 SD). There were no differences in age or steroid treatment between the 2 subgroups. Paired t test showed a significant difference in both NSAA (p = 0.013) and 6MWT (p = 0.03) between baseline and follow-up after 12 months in patients with DMD carrying the G allele. The difference was not significant in the T subgroup. The analysis of covariance using age and baseline values as covariate and SPP1 genotype as fixed effect showed that these parameters are significantly correlated with the 12-month values.
Conclusions:
These data provide evidence of the role of SPP1 genotype as a disease modifier in DMD and support its relevance in the selection of homogeneous groups of patients for future clinical trials.
doi:10.1212/WNL.0b013e31825f04ea
PMCID: PMC3390537  PMID: 22744661
5.  Characterization of a rare case of Ullrich congenital muscular dystrophy due to truncating mutations within the COL6A1 gene C-Terminal domain: a case report 
BMC Medical Genetics  2013;14:59.
Background
Mutations within the C-terminal region of the COL6A1 gene are only detected in Ullrich/Bethlem patients on extremely rare occasions.
Case presentation
Herein we report two Brazilian brothers with a classic Ullrich phenotype and compound heterozygous for two truncating mutations in COL6A1 gene, expected to result in the loss of the α1(VI) chain C2 subdomain. Despite the reduction in COL6A1 RNA level due to nonsense RNA decay, three truncated alpha1 (VI) chains were produced as protein variants encoded by different out-of-frame transcripts. Collagen VI matrix was severely decreased and intracellular protein retention evident.
Conclusion
The altered deposition of the fibronectin network highlighted abnormal interactions of the mutated collagen VI, lacking the α1(VI) C2 domain, within the extracellular matrix, focusing further studies on the possible role played by collagen VI in fibronectin deposition and organization.
doi:10.1186/1471-2350-14-59
PMCID: PMC3681647  PMID: 23738969
Ullrich congenital dystrophy; Collagen VI; C-terminal truncating mutations
6.  Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2′OMePS AON and ZM2 NP-AON Complexes in mdx Mice 
In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of 2′-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules.
doi:10.1155/2012/897076
PMCID: PMC3471065  PMID: 23091362
7.  The DMD Locus Harbours Multiple Long Non-Coding RNAs Which Orchestrate and Control Transcription of Muscle Dystrophin mRNA Isoforms 
PLoS ONE  2012;7(9):e45328.
The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.
doi:10.1371/journal.pone.0045328
PMCID: PMC3448672  PMID: 23028937
8.  Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype 
BMC Medical Genetics  2012;13:73.
Background
Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial.
Methods
Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females.
Results
The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers.
Conclusions
This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.
doi:10.1186/1471-2350-13-73
PMCID: PMC3459813  PMID: 22894145
Dystrophinopathy; Female carriers; X-inactivation; Transcriptional balancing
9.  Expression of collagen VI α5 and α6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis 
Matrix Biology  2012;31(3):187-196.
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1−/− mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.
Highlights
► We study collagen VI alpha 5 and alpha 6 chains expression in human skeletal muscle. ► ► We show that alpha 5 chain is exclusively present at the myotendinous junctions. ► We show that alpha 6 chain is present in the ECM but not at the basement membranes. ► We show that alpha 6 chain increases in Duchenne muscular dystrophy muscle fibrosis. ► We hypothesize the possible formation of alpha1-2-6 or alpha1-2-5 chains trimers.
doi:10.1016/j.matbio.2011.12.003
PMCID: PMC3315014  PMID: 22226732
Collagen VI; Skeletal muscle; Myotendinous junctions; Fibrosis; Duchenne muscular dystrophy
10.  The absence of dystrophin brain isoform expression in healthy human heart ventricles explains the pathogenesis of 5' X-linked dilated cardiomyopathy 
BMC Medical Genetics  2012;13:20.
Background
In X-linked dilated cardiomyopathy due to dystrophin mutations which abolish the expression of the M isoform (5'-XLDC), the skeletal muscle is spared through the up-regulation of the Brain (B) isoform, a compensatory mechanism that does not appear to occur in the heart of affected individuals.
Methods
We quantitatively studied the expression topography of both B and M isoforms in various human heart regions through in-situ RNA hybridization, Reverse-Transcriptase and Real-Time PCR experiments. We also investigated the methylation profile of the B promoter region in the heart and quantified the B isoform up regulation in the skeletal muscle of two 5'-XLDC patients.
Results
Unlike the M isoform, consistently detectable in all the heart regions, the B isoform was selectively expressed in atrial cardiomyocytes, but absent in ventricles and in conduction system structures. Although the level of B isoform messenger in the skeletal muscle of 5'-XLDC patients was lower that of the M messenger present in control muscle, it seems sufficient to avoid an overt muscle pathology. This result is consistent with the protein level in XLDC patients muscles we previously quantified. Methylation studies revealed that the B promoter shows an overall low level of methylation at the CG dinucleotides in both atria and ventricles, suggesting a methylation-independent regulation of the B promoter activity.
Conclusions
The ventricular dilatation seen in 5'-XLDC patients appears to be functionally related to loss of the M isoform, the only isoform transcribed in human ventricles; in contrast, the B isoform is well expressed in heart but confined to the atria. Since the B isoform can functionally replace the M isoform in the skeletal muscle, its expression in the heart could potentially exert the same rescue function. Methylation status does not seem to play a role in the differential B promoter activity in atria and ventricles, which may be governed by other regulatory mechanisms. If these mechanisms could be deduced, de-silencing of the B isoform may represent a therapeutic strategy in 5'-XLDC patients.
doi:10.1186/1471-2350-13-20
PMCID: PMC3331845  PMID: 22455600
11.  Congenital Muscular Dystrophies: A Brief Review 
Seminars in Pediatric Neurology  2011;18(4):277-288.
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments.
doi:10.1016/j.spen.2011.10.010
PMCID: PMC3332154  PMID: 22172424
12.  Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results 
Six individuals with Ullrich congenital muscular dystrophy (UCMD) and mutations in the genes-encoding collagen VI, aging 5–9, received 3–5 mg/kg of cyclosporine A (CsA) daily for 1 to 3.2 years. The primary outcome measure was the muscle strength evaluated with a myometer and expressed as megalimbs. The megalimbs score showed significant improvement (P = 0.01) in 5 of the 6 patients. Motor function did not change. Respiratory function deteriorated in all. CsA treatment corrected mitochondrial dysfunction, increased muscle regeneration, and decreased the number of apoptotic nuclei. Results from this study demonstrate that long-term treatment with CsA ameliorates performance in the limbs, but not in the respiratory muscles of UCMD patients, and that it is well tolerated. These results suggest considering a trial of CsA or nonimmunosuppressive cyclosporins, that retains the PTP-desensitizing properties of CsA, as early as possible in UCMD patients when diaphragm is less compromised.
doi:10.1155/2011/139194
PMCID: PMC3199070  PMID: 22028947
13.  Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis 
BMC Medical Genetics  2010;11:64.
Background
Multiple sclerosis (MS) is a complex disorder thought to result from an interaction between environmental and genetic predisposing factors which have not yet been characterised, although it is known to be associated with the HLA region on 6p21.32. Recently, a picture of chronic cerebrospinal venous insufficiency (CCSVI), consequent to stenosing venous malformation of the main extra-cranial outflow routes (VM), has been described in patients affected with MS, introducing an additional phenotype with possible pathogenic significance.
Methods
In order to explore the presence of copy number variations (CNVs) within the HLA locus, a custom CGH array was designed to cover 7 Mb of the HLA locus region (6,899,999 bp; chr6:29,900,001-36,800,000). Genomic DNA of the 15 patients with CCSVI/VM and MS was hybridised in duplicate.
Results
In total, 322 CNVs, of which 225 were extragenic and 97 intragenic, were identified in 15 patients. 234 known polymorphic CNVs were detected, the majority of these being situated in non-coding or extragenic regions. The overall number of CNVs (both extra- and intragenic) showed a robust and significant correlation with the number of stenosing VMs (Spearman: r = 0.6590, p = 0.0104; linear regression analysis r = 0.6577, p = 0.0106).
The region we analysed contains 211 known genes. By using pathway analysis focused on angiogenesis and venous development, MS, and immunity, we tentatively highlight several genes as possible susceptibility factor candidates involved in this peculiar phenotype.
Conclusions
The CNVs contained in the HLA locus region in patients with the novel phenotype of CCSVI/VM and MS were mapped in detail, demonstrating a significant correlation between the number of known CNVs found in the HLA region and the number of CCSVI-VMs identified in patients. Pathway analysis revealed common routes of interaction of several of the genes involved in angiogenesis and immunity contained within this region. Despite the small sample size in this pilot study, it does suggest that the number of multiple polymorphic CNVs in the HLA locus deserves further study, owing to their possible involvement in susceptibility to this novel MS/VM plus phenotype, and perhaps even other types of the disease.
doi:10.1186/1471-2350-11-64
PMCID: PMC2880319  PMID: 20426824
14.  Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies 
BMC Medical Genetics  2010;11:44.
Background
Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions.
Methods
We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored.
Results
A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI.
Conclusions
Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes.
doi:10.1186/1471-2350-11-44
PMCID: PMC2850895  PMID: 20302629
15.  A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies 
BMC Genomics  2008;9:572.
Background
The commonest pathogenic DMD changes are intragenic deletions/duplications which make up to 78% of all cases and point mutations (roughly 20%) detectable through direct sequencing. The remaining mutations (about 2%) are thought to be pure intronic rearrangements/mutations or 5'-3' UTR changes. In order to screen the huge DMD gene for all types of copy number variation mutations we designed a novel custom high density comparative genomic hybridisation array which contains the full genomic region of the DMD gene and spans from 100 kb upstream to 100 kb downstream of the 2.2 Mb DMD gene.
Results
We studied 12 DMD/BMD patients who either had no detectable mutations or carried previously identified quantitative pathogenic changes in the DMD gene. We validated the array on patients with previously known mutations as well as unaffected controls, we identified three novel pure intronic rearrangements and we defined all the mutation breakpoints both in the introns and in the 3' UTR region. We also detected a novel polymorphic intron 2 deletion/duplication variation. Despite the high resolution of this approach, RNA studies were required to confirm the functional significance of the intronic mutations identified by CGH. In addition, RNA analysis identified three intronic pathogenic variations affecting splicing which had not been detected by the CGH analysis.
Conclusion
This novel technology represents an effective high throughput tool to identify both common and rarer DMD rearrangements. RNA studies are required in order to validate the significance of the CGH array findings. The combination of these tools will fully cover the identification of causative DMD rearrangements in both coding and non-coding regions, particularly in patients in whom standard although extensive techniques are unable to detect a mutation.
doi:10.1186/1471-2164-9-572
PMCID: PMC2612025  PMID: 19040728
16.  Aspergillus Galactomannan Antigen in the Cerebrospinal Fluid of Bone Marrow Transplant Recipients with Probable Cerebral Aspergillosis 
Journal of Clinical Microbiology  2002;40(4):1496-1499.
The Aspergillus galactomannan test was performed on cerebrospinal fluid and serum samples from 5 patients with probable cerebral aspergillosis and from 16 control patients. Cerebrospinal fluid galactomannan levels were significantly higher in aspergillosis patients, and most galactomannan was produced intrathecally. Comparison of serum galactomannan values in pulmonary and cerebral aspergillosis patients showed significant overlapping. Detection of Aspergillus galactomannan in cerebrospinal fluid may be diagnostic of cerebral aspergillosis.
doi:10.1128/JCM.40.4.1496-1499.2002
PMCID: PMC140329  PMID: 11923380
17.  Melanocytes—A Novel Tool to Study Mitochondrial Dysfunction in Duchenne Muscular Dystrophy 
Journal of Cellular Physiology  2012;228(6):1323-1331.
Dystrophin is a subsarcolemmal protein that, by linking the actin cytoskeleton to the extracellular matrix via dystroglycans, is critical for the integrity of muscle fibers. Here, we report that epidermal melanocytes, obtained from conventional skin biopsy, express dystrophin with a restricted localization to the plasma membrane facing the dermal–epidermal junction. In addition the full-length muscle isoform mDp427 was clearly detectable in melanocyte cultures as assessed by immunohistochemistry, RNA, and Western blot analysis. Melanocytes of Duchenne muscular dystrophy (DMD) patients did not express dystrophin, and the ultrastructural analysis revealed typical mitochondrial alterations similar to those occurring in myoblasts from the same patients. Mitochondria of melanocytes from DMD patients readily accumulated tetramethylrhodamine methyl ester, indicating that they are energized irrespective of the presence of dystrophin but, at variance from mitochondria of control donors, depolarized upon the addition of oligomycin, suggesting that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Pure melanocyte cultures can be readily obtained by conventional skin biopsies and may be a feasible and reliable tool alternative to muscle biopsy for functional studies in dystrophinopathies. The mitochondrial dysfunction occurring in DMD melanocytes could represent a promising cellular biomarker for monitoring dystrophinopathies also in response to pharmacological treatments. J. Cell. Physiol. 228: 1323–1331, 2013. © 2012 Wiley Periodicals, Inc.
doi:10.1002/jcp.24290
PMCID: PMC3601437  PMID: 23169061

Results 1-17 (17)