Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C 
Twenty-five patients with Niemann Pick disease type C (age range: 7 months to 44 years) were enrolled in an Italian independent multicenter trial and treated with miglustat for periods from 48 to 96 months.
Based on the age at onset of neurological manifestations patients’ phenotypes were classified as: adult (n = 6), juvenile (n = 9), late infantile (n = 6), early infantile (n = 2). Two patients had an exclusively visceral phenotype. We clinically evaluated patients’ neurological involvement, giving a score of severity ranging from 0 (best) to 3 (worst) for gait abnormalities, dystonia, dysmetria, dysarthria, and developmental delay/cognitive impairment, and from 0 to 4 for dysphagia. We calculated a mean composite severity score transforming the original scores proportionally to range from 0 to 1 to summarize the clinical picture of patients and monitor their clinical course.
We compared the results after 24 months of treatment in 23 patients showing neurological manifestations. Stabilization or improvement of all parameters was observed in the majority of patients. With the exception of developmental delay/cognitive impairment, these results persisted after 48–96 months in 41 – 55% of the patients (dystonia: 55%, dysarthria: 50%, gait abnormalities: 43%, dysmetria: 41%, respectively). After 24 months of therapy the majority of the evaluable patients (n = 20), demonstrated a stabilization or improvement in the ability to swallow four substances of different consistency (water: 65%, purée: 58%, little pasta: 60%, biscuit: 55%). These results persisted after 48–96 months in 40-50% of patients, with the exception of water swallowing. Stabilization or improvement of the composite severity score was detected in the majority (57%) of 7 patients who were treated early (within 3.5 years from onset) and rarely in patients who received treatment later.
The results of this study suggest that miglustat treatment can improve or stabilize neurological manifestations, at least for a period of time; the severity of clinical conditions at the beginning of treatment can influence the rate of disease progression. This conclusion applies particularly to patients with juvenile or adult onset of the disease.
Trial registration
EudraCT number 2006-005842-35
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-015-0240-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4359492  PMID: 25888393
Niemann-Pick disease type C; NPC; Miglustat; NB-DNJ; Substrate reduction therapy; Treatment; Therapy
2.  Functional and Morphological Improvement of Dystrophic Muscle by Interleukin 6 Receptor Blockade 
EBioMedicine  2015;2(4):285-293.
The anti-inflammatory agents glucocorticoids (GC) are the only available treatment for Duchenne muscular dystrophy (DMD). However, long-term GC treatment causes muscle atrophy and wasting. Thus, targeting specific mediator of inflammatory response may be more specific, more efficacious, and with fewer side effects. The pro-inflammatory cytokine interleukin (IL) 6 is overproduced in patients with DMD and in the muscle of mdx, the animal model for human DMD. We tested the ability of inhibition of IL6 activity, using an interleukin-6 receptor (Il6r) neutralizing antibody, to ameliorate the dystrophic phenotype. Blockade of endogenous Il6r conferred on dystrophic muscle resistance to degeneration and alleviated both morphological and functional consequences of the primary genetic defect. Pharmacological inhibition of IL6 activity leaded to changes in the dystrophic muscle environment, favoring anti-inflammatory responses and improvement in muscle repair. This resulted in a functional homeostatic maintenance of dystrophic muscle.
These data provide an alternative pharmacological strategy for treatment of DMD and circumvent the major problems associated with conventional therapy.
Graphical abstract
•Inhibition of IL6 activity leads to changes in the dystrophic muscle environment.•IL6R neutralizing antibody ameliorates the dystrophic phenotype.•IL6 blockade counters muscle decline in mdx mice.
PMCID: PMC4485902  PMID: 26137572
IL6; Muscular dystrophy; Inflammation; Necrosis; Therapy
3.  Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy 
The Journal of Clinical Investigation  2014;124(11):4693-4708.
Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.
PMCID: PMC4347224  PMID: 25250574
5.  Natural history of pulmonary function in collagen VI-related myopathies 
Brain  2013;136(12):3625-3633.
The spectrum of clinical phenotypes associated with a deficiency or dysfunction of collagen VI in the extracellular matrix of muscle are collectively termed ‘collagen VI-related myopathies’ and include Ullrich congenital muscular dystrophy, Bethlem myopathy and intermediate phenotypes. To further define the clinical course of these variants, we studied the natural history of pulmonary function in correlation to motor abilities in the collagen VI-related myopathies by analysing longitudinal forced vital capacity data in a large international cohort. Retrospective chart reviews of genetically and/or pathologically confirmed collagen VI-related myopathy patients were performed at 10 neuromuscular centres: USA (n = 2), UK (n = 2), Australia (n = 2), Italy (n = 2), France (n = 1) and Belgium (n = 1). A total of 486 forced vital capacity measurements obtained in 145 patients were available for analysis. Patients at the severe end of the clinical spectrum, conforming to the original description of Ullrich congenital muscular dystrophy were easily identified by severe muscle weakness either preventing ambulation or resulting in an early loss of ambulation, and demonstrated a cumulative decline in forced vital capacity of 2.6% per year (P < 0.0001). Patients with better functional abilities, in whom walking with/without assistance was achieved, were initially combined, containing both intermediate and Bethlem myopathy phenotypes in one group. However, one subset of patients demonstrated a continuous decline in pulmonary function whereas the other had stable pulmonary function. None of the patients with declining pulmonary function attained the ability to hop or run; these patients were categorized as intermediate collagen VI-related myopathy and the remaining patients as Bethlem myopathy. Intermediate patients had a cumulative decline in forced vital capacity of 2.3% per year (P < 0.0001) whereas the relationship between age and forced vital capacity in patients with Bethlem myopathy was not significant (P = 0.1432). Nocturnal non-invasive ventilation was initiated in patients with Ullrich congenital muscular dystrophy by 11.3 years (±4.0) and in patients with intermediate collagen VI-related myopathy by 20.7 years (±1.5). The relationship between maximal motor ability and forced vital capacity was highly significant (P < 0.0001). This study demonstrates that pulmonary function profiles can be used in combination with motor function profiles to stratify collagen VI-related myopathy patients phenotypically. These findings improve our knowledge of the natural history of the collagen VI-related myopathies, enabling proactive optimization of care and preparing this patient population for clinical trials.
PMCID: PMC3859224  PMID: 24271325
collagen VI-related myopathies; natural history; forced vital capacity; optimization of care; outcome measure
6.  Psychological and practical difficulties among parents and healthy siblings of children with Duchenne vs. Becker muscular dystrophy: an Italian comparative study 
Acta Myologica  2014;33(3):136-143.
This study explored the burden in parents and healthy siblings of 4-17 year-old patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, and whether the burden varied according to clinical aspects and social resources.
Data on socio-demographic characteristics, patient's clinical history, parent and healthy children burden, and on parent's social resources were collected using self-reported questionnaires administered to 336 parents of patients with DMD (246) and BMD (90).
Parents of patients with DMD reported higher burden than those of patients with BMD, especially concerning feeling of loss (84.3% DMD vs. 57.4% BMD), stigma (44.2% DMD vs. 5.5% BMD) and neglect of hobbies (69.0% DMD vs. 32.5% BMD). Despite the burden, 66% DMD and 62.4% BMD parents stated the caregiving experience had a positive impact on their lives. A minority of parents believed MD has a negative influence on the psychological well-being (31.0% DMD vs. 12.8% BMD), and social life of unaffected children (25.7% vs. 18.4%).
In the DMD group, burden correlated with duration of illness and parent age, and burden was higher among parents with lower social contacts and support in emergencies. In DMD, difficulties among healthy children were reported as higher by parents who were older, had higher burden and lower social contacts. In both groups, burden increased in relation to patient disability.
These findings underline that the psychological support to be provided to parents of patients with MD, should take into account clinical features of the disease.
PMCID: PMC4369844  PMID: 25873782
Duchenne muscular dystrophy; Becker muscular dystrophy; parents, healthy siblings; burden; social network
7.  The 6 Minute Walk Test and Performance of Upper Limb in Ambulant Duchenne Muscular Dystrophy Boys 
PLoS Currents  2014;
The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase.
PMCID: PMC4208936  PMID: 25642376
8.  Long Term Natural History Data in Ambulant Boys with Duchenne Muscular Dystrophy: 36-Month Changes 
PLoS ONE  2014;9(10):e108205.
The 6 minute walk test has been recently chosen as the primary outcome measure in international multicenter clinical trials in Duchenne muscular dystrophy ambulant patients. The aim of the study was to assess the spectrum of changes at 3 years in the individual measures, their correlation with steroid treatment, age and 6 minute walk test values at baseline. Ninety-six patients from 11 centers were assessed at baseline and 12, 24 and 36 months after baseline using the 6 minute walk test and the North Star Ambulatory Assessment. Three boys (3%) lost the ability to perform the 6 minute walk test within 12 months, another 13 between 12 and 24 months (14%) and 11 between 24 and 36 months (12%). The 6 minute walk test showed an average overall decline of −15.8 (SD 77.3) m at 12 months, of −58.9 (SD 125.7) m at 24 months and −104.22 (SD 146.2) m at 36 months. The changes were significantly different in the two baseline age groups and according to the baseline 6 minute walk test values (below and above 350 m) (p<0.001). The changes were also significantly different according to steroid treatment (p = 0.01). Similar findings were found for the North Star Ambulatory Assessment. These are the first 36 month longitudinal data using the 6 minute walk test and North Star Ambulatory Assessment in Duchenne muscular dystrophy. Our findings will help not only to have a better idea of the progression of the disorder but also provide reference data that can be used to compare with the results of the long term extension studies that are becoming available.
PMCID: PMC4182715  PMID: 25271887
9.  6 Minute Walk Test in Duchenne MD Patients with Different Mutations: 12 Month Changes 
PLoS ONE  2014;9(1):e83400.
In the last few years some of the therapeutical approaches for Duchenne muscular dystrophy (DMD) are specifically targeting distinct groups of mutations, such as deletions eligible for skipping of individual exons. The aim of this observational study was to establish whether patients with distinct groups of mutations have different profiles of changes on the 6 minute walk test (6MWT) over a 12 month period.
The 6MWT was performed in 191 ambulant DMD boys at baseline and 12 months later. The results were analysed using a test for heterogeneity in order to establish possible differences among different types of mutations (deletions, duplications, point mutations) and among subgroups of deletions eligible to skip individual exons.
At baseline the 6MWD ranged between 180 and 560,80 metres (mean 378,06, SD 74,13). The 12 month changes ranged between −325 and 175 (mean −10.8 meters, SD 69.2). Although boys with duplications had better results than those with the other types of mutations, the difference was not significant.
Similarly, boys eligible for skipping of the exon 44 had better baseline results and less drastic changes than those eligible for skipping exon 45 or 53, but the difference was not significant.
even if there are some differences among subgroups, the mean 12 month changes in each subgroup were all within a narrow Range: from the mean of the whole DMD cohort. This information will be of help at the time of designing clinical trials with small numbers of eligible patients.
PMCID: PMC3885414  PMID: 24421885
10.  Cardiomyopathy in patients with POMT1-related congenital and limb-girdle muscular dystrophy 
European Journal of Human Genetics  2012;20(12):1234-1239.
Protein-o-mannosyl transferase 1 (POMT1) is a glycosyltransferase involved in α-dystroglycan (α-DG) glycosylation. Clinical phenotype in POMT1-mutated patients ranges from congenital muscular dystrophy (CMD) with structural brain abnormalities, to limb-girdle muscular dystrophy (LGMD) with microcephaly and mental retardation, to mild LGMD. No cardiac involvement has until now been reported in POMT1-mutated patients. We report three patients who harbored compound heterozygous POMT1 mutations and showed left ventricular (LV) dilation and/or decrease in myocardial contractile force: two had a LGMD phenotype with a normal or close-to-normal cognitive profile and one had CMD with mental retardation and normal brain MRI. Reduced or absent α-DG immunolabeling in muscle biopsies were identified in all three patients. Bioinformatic tools were used to study the potential effect of POMT1-detected mutations. All the detected POMT1 mutations were predicted in silico to interfere with protein folding and/or glycosyltransferase function. The report on the patients described here has widened the clinical spectrum associated with POMT1 mutations to include cardiomyopathy. The functional impact of known and novel POMT1 mutations was predicted with a bioinformatics approach, and results were compared with previous in vitro studies of protein-o-mannosylase function.
PMCID: PMC3499746  PMID: 22549409
POMT1; LGMD; CMD; cardiomyopathy; α-dystroglycan glycosylation
12.  “I have got something positive out of this situation”: psychological benefits of caregiving in relatives of young people with muscular dystrophy 
Journal of Neurology  2013;261(1):188-195.
This paper focuses on the psychological benefits of caregiving in key relatives of patients with muscular dystrophies (MD), a group of rare diseases characterized by progressive weakness and restriction of the patient’s functional abilities. We describe whether relatives perceived caregiving to be a positive experience and test whether relatives’ perceptions vary in relation to their view of the patient as a valued person, the degree of involvement in care, and the level of support provided by social network and professionals. The study sample included 502 key relatives of patients aged 4–25 years, suffering from Duchenne, Becker, or limb-girdle MD, in treatment for at least 6 months to one of the eight participating centers, living with at least one relative aged 18–80 years. Of key relatives, 88 % stated that they had gotten something positive out of the situation, 96 % considered their patients to be sensitive, and 94 % viewed their patients as talented. Positive aspects of caregiving were more recognized by key relatives who were more convinced that the patient was sensitive and who perceived that they received higher level of professional help and psychological social support. These results suggest that most key relatives consider that their caregiving experience has had a positive impact on their lives, despite the practical difficulties of caring for patients with MD. Professionals should help relatives to identify the benefits of caregiving without denying its difficulties. Clinicians themselves should develop positive attitudes towards family involvement in the care of patients with long-term diseases.
PMCID: PMC3895206  PMID: 24202786
Muscular dystrophy; Psychological benefits; Caregiving; Social network; Professional support
13.  Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy 
Neurology  2012;79(2):159-162.
To test the effect of the single nucleotide polymorphism −66 T>G (rs28357094) in the osteopontin gene (SPP1) on functional measures over 12 months in Duchenne muscular dystrophy (DMD).
This study was conducted on a cohort of ambulatory patients with DMD from a network of Italian neuromuscular centers, evaluated longitudinally with the North Star Ambulatory Assessment (NSAA) and the 6-Minute Walk Test (6MWT) at study entry and after 12 months. Genotype at rs28357094 was determined after completion of the clinical evaluations. Patients were stratified in 2 groups according to a dominant model (TT homozygotes vs TG heterozygotes and GG homozygotes) and clinical data were retrospectively compared between groups.
Eighty patients were selected (age 4.1–19.3 years; mean 8.3 ± 2.7 SD). There were no differences in age or steroid treatment between the 2 subgroups. Paired t test showed a significant difference in both NSAA (p = 0.013) and 6MWT (p = 0.03) between baseline and follow-up after 12 months in patients with DMD carrying the G allele. The difference was not significant in the T subgroup. The analysis of covariance using age and baseline values as covariate and SPP1 genotype as fixed effect showed that these parameters are significantly correlated with the 12-month values.
These data provide evidence of the role of SPP1 genotype as a disease modifier in DMD and support its relevance in the selection of homogeneous groups of patients for future clinical trials.
PMCID: PMC3390537  PMID: 22744661
14.  Characterization of a rare case of Ullrich congenital muscular dystrophy due to truncating mutations within the COL6A1 gene C-Terminal domain: a case report 
BMC Medical Genetics  2013;14:59.
Mutations within the C-terminal region of the COL6A1 gene are only detected in Ullrich/Bethlem patients on extremely rare occasions.
Case presentation
Herein we report two Brazilian brothers with a classic Ullrich phenotype and compound heterozygous for two truncating mutations in COL6A1 gene, expected to result in the loss of the α1(VI) chain C2 subdomain. Despite the reduction in COL6A1 RNA level due to nonsense RNA decay, three truncated alpha1 (VI) chains were produced as protein variants encoded by different out-of-frame transcripts. Collagen VI matrix was severely decreased and intracellular protein retention evident.
The altered deposition of the fibronectin network highlighted abnormal interactions of the mutated collagen VI, lacking the α1(VI) C2 domain, within the extracellular matrix, focusing further studies on the possible role played by collagen VI in fibronectin deposition and organization.
PMCID: PMC3681647  PMID: 23738969
Ullrich congenital dystrophy; Collagen VI; C-terminal truncating mutations
15.  Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort 
Neuromuscular Disorders  2013;23(3):229-238.
Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease.
PMCID: PMC3594745  PMID: 23394783
DNM2; Centronuclear myopathy; Muscle MRI; ‘Necklace’ fibers; Somatic mosaicism
16.  24 Month Longitudinal Data in Ambulant Boys with Duchenne Muscular Dystrophy 
PLoS ONE  2013;8(1):e52512.
The aim of the study was i) to assess the spectrum of changes over 24 months in ambulant boys affected by Duchenne muscular dystrophy, ii) to establish the difference between the first and the second year results and iii) to identify possible early markers of loss of ambulation.
One hundred and thirteen patients (age range 4.1–17, mean 8.2) fulfilled the inclusion criteria, 67 of the 113 were on daily and 40 on intermittent steroids, while 6 were not on steroids. All were assessed using the 6 Minute Walk Test (6MWT), the North Star Ambulatory Assessment (NSAA) and timed test.
On the 6MWT there was an average overall decline of −22.7 (SD 81.0) in the first year and of −64.7 (SD 123.1) in the second year. On the NSAA the average overall decline was of −1.86 (SD 4.21) in the first year and of −2.98 (SD 5.19) in the second year. Fourteen children lost ambulation, one in the first year and the other 13 in the second year of the study. A distance of at least 330 meters on the 6MWT, or a NSAA score of 18 at baseline reduced significantly the risk of losing ambulation within 2 years.
These results can be of help at the time of using inclusion criteria for a study in ambulant patients in order to minimize the risk of patients who may lose ambulation within the time of the trial.
PMCID: PMC3543414  PMID: 23326337
17.  Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype 
BMC Medical Genetics  2012;13:73.
Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial.
Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females.
The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers.
This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.
PMCID: PMC3459813  PMID: 22894145
Dystrophinopathy; Female carriers; X-inactivation; Transcriptional balancing
18.  The empowerment of translational research: lessons from laminopathies 
The need for a collaborative approach to complex inherited diseases collectively referred to as laminopathies, encouraged Italian researchers, geneticists, physicians and patients to join in the Italian Network for Laminopathies, in 2009. Here, we highlight the advantages and added value of such a multidisciplinary effort to understand pathogenesis, clinical aspects and try to find a cure for Emery-Dreifuss muscular dystrophy, Mandibuloacral dysplasia, Hutchinson-Gilford Progeria and forms of lamin-linked cardiomyopathy, neuropathy and lipodystrophy.
PMCID: PMC3458975  PMID: 22691392
Laminopathies; Emery-Dreifuss Muscular Dystrophy; Dilated Cardiomyopathy with Conduction Defects; Mandibuloacral Dysplasia; Familial Partial Lipodystrophy Type 2; Hutchinson-Gilford Progeria Syndrome; Rare Diseases; Networking activity; interdisciplinary approach to diseases
19.  The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children 
Childhood cerebellar ataxias, and particularly congenital ataxias, are heterogeneous disorders and several remain undefined. We performed a muscle biopsy in patients with congenital ataxia and children with later onset undefined ataxia having neuroimaging evidence of cerebellar atrophy. Significant reduced levels of Coenzyme Q10 (COQ10) were found in the skeletal muscle of 9 out of 34 patients that were consecutively screened. A mutation in the ADCK3/Coq8 gene (R347X) was identified in a female patient with ataxia, seizures and markedly reduced COQ10 levels. In a 2.5-years-old male patient with non syndromic congenital ataxia and autophagic vacuoles in the muscle biopsy we identified a homozygous nonsense mutation R111X mutation in SIL1 gene, leading to early diagnosis of Marinesco-Sjogren syndrome. We think that muscle biopsy is a valuable procedure to improve diagnostic assesement in children with congenital ataxia or other undefined forms of later onset childhood ataxia associated to cerebellar atrophy at MRI.
PMCID: PMC3341568  PMID: 21873089
Inherited cerebellar ataxias; Marinesco-Sjogren syndrome; Coenzyme Q10 deficiency
20.  Congenital Muscular Dystrophies: A Brief Review 
Seminars in Pediatric Neurology  2011;18(4):277-288.
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments.
PMCID: PMC3332154  PMID: 22172424
21.  GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings 
Biochimica et biophysica acta  2011;1812(7):782-790.
GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation.
Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses.
Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease.
PMCID: PMC3210552  PMID: 21497194
beta-galactosidase; GM1- gangliosidosis; Morquio B; mutation update; homology modelling
22.  Spinal muscular atrophy 
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life.
Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic severity going from high mortality within the first year for SMA type 1 to no mortality for the chronic and later onset forms.
PMCID: PMC3231874  PMID: 22047105
Proximal spinal muscular atrophy; SMN1; SMN2; motor neurons Disease names and synonyms: Spinal muscular atrophy 5q linked; Proximal SMA
23.  Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation 
Neuromuscular disorders : NMD  2010;20(7):438-442.
Myofibrillar myopathies (MFMs) are a heterogeneous group of neuromuscular disorders characterized by disintegration of myofibrils. The inheritance pattern in MFMs is commonly autosomal dominant, but there has been a striking absence of secondary cases noted in a BAG3-associated subtype. We studied three families with BAG3 p.Pro209Leu mutation showing a severe phenotype of myofibrillar myopathy and axonal neuropathy with giant axons. In one family, transmission to a pair of siblings has occurred from their asymptomatic father who showed somatic mosaicism. In two other families, neither of the parents was affected or showed detectable level of somatic mosaicism. These observations suggest that the BAG3 variant of MFM may result from a spontaneous mutation at an early point of embryonic development and that transmission from a mosaic parent may occur more than once. The study underlines the importance of parental evaluation as it may have implications for genetic counseling.
PMCID: PMC2900409  PMID: 20605452
myofibrillar myopathy; limb-girdle muscular dystrophy; cardiomyopathy; giant axons; Bcl-2-associated athanogene 3 (BAG3)
24.  miRNAs as serum biomarkers for Duchenne muscular dystrophy 
EMBO Molecular Medicine  2011;3(5):258-265.
Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals ‘cured’ through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking.
PMCID: PMC3112257  PMID: 21425469
biomarkers; diagnosis; Duchenne Muscular Dystrophy; miRNA; therapy
25.  SMN transcript levels in leukocytes of SMA patients determined by absolute real-time PCR 
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous mutations of the SMN1 gene. Three forms of SMA are recognized (type I–III) on the basis of clinical severity. All patients have at least one or more (usually 2–4) copies of a highly homologous gene (SMN2), which produces insufficient levels of functional SMN protein, because of alternative splicing of exon 7. Recently, evidence has been provided that SMN2 expression can be enhanced by pharmacological treatment. However, no reliable biomarkers are available to test the molecular efficacy of the treatments. At present, the only potential biomarker is the dosage of SMN products in peripheral blood. However, the demonstration that SMN full-length (SMN-fl) transcript levels are reduced in leukocytes of patients compared with controls remains elusive (except for type I). We have developed a novel assay based on absolute real-time PCR, which allows the quantification of SMN1-fl/SMN2-fl transcripts. For the first time, we have shown that SMN-fl levels are reduced in leukocytes of type II–III patients compared with controls. We also found that transcript levels are related to clinical severity as in type III patients SMN2-fl levels are significantly higher compared with type II and directly correlated with functional ability in type II patients and with age of onset in type III patients. Moreover, in haploidentical siblings with discordant phenotype, the less severely affected individuals showed significantly higher transcript levels. Our study shows that SMN2-fl dosage in leukocytes can be considered a reliable biomarker and can provide the rationale for SMN dosage in clinical trials.
PMCID: PMC2987170  PMID: 19603064
spinal muscular atrophy; real-time PCR; biomarker; SMN; transcripts

Results 1-25 (26)