Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  T−786→C polymorphism of the endothelial nitric oxide synthase gene is associated with insulin resistance in patients with ischemic or non ischemic cardiomyopathy 
BMC Medical Genetics  2012;13:92.
Insulin resistance (IR) and endothelial dysfunction are frequently associated in cardiac disease. The T−786→C variant in the promoter region of the endothelial nitric oxide synthase (eNOS) gene has been associated with IR in both non-diabetic and diabetic subjects. Aim of the study was to assess the reciprocal relationships between T−786→C eNOS polymorphism and IR in ischemic and non-ischemic cardiomyopathy.
A group of 132 patients (108 males, median age 65 years) with global left ventricular (LV) dysfunction secondary to ischemic or non-ischemic heart disease was enrolled. Genotyping of T−786→C eNOS gene promoter, fasting glucose, insulin, and insulin resistance (defined as HOMA-IR index > 2.5) were determined in all patients.
Genotyping analysis yielded 37 patients homozygous for the T allele (TT), 70 heterozygotes (TC) and 25 homozygous for C (CC). Patients with CC genotype had significantly higher systemic arterial pressure, blood glucose, plasma insulin and HOMA index levels than TT. At multivariate logistic analysis, the history of hypertension and the genotype were the only predictors of IR. In particular, CC genotype increased the risk of IR (CI% 1.4-15.0, p < 0.01) 4.5-fold. The only parameter independently associated with the extent of LV dysfunction and the presence of heart failure (HF) was the HOMA index (2.4 CI% 1.1-5.6, p < 0.04).
T−786→C eNOS polymorphism was the major independent determinant of IR in a population of patients with ischemic and non-ischemic cardiomyopathy. The results suggest that a condition of primitive eNOS lower expression can predispose to an impairment of glucose homeostasis, which in turn is able to affect the severity of heart disease.
PMCID: PMC3495192  PMID: 23031426
eNOS polymorphism; Insulin resistance; Heart failure
2.  A novel LMNA mutation (R189W) in familial dilated cardiomyopathy: evidence for a 'hot spot' region at exon 3: a case report 
We describe a case of a patient with idiopathic dilated cardiomyopathy and cardiac conduction abnormalities who presented a strong family history of sudden cardiac death. Genetic screening of lamin A/C gene revealed in proband the presence of a novel missense mutation (R189W), near the most prevalent lamin A/C mutation (R190W), suggesting a "hot spot" region at exon 3.
PMCID: PMC2859370  PMID: 20307303
3.  Clinical utility of genetic tests for inherited hypertrophic and dilated cardiomyopathies 
Genetic testing has become an increasingly important part of medical practice for heritable form of cardiomyopathies. Hypertrophic cardiomyopathy and about 50% of idiopathic dilatative cardiomyopathy are familial diseases, with an autosomal dominant pattern of inheritance.
Some genotype-phenotype correlations can provide important information to target DNA analyses in specific genes. Genetic testing may clarify diagnosis and help the optimal treatment strategies for more malignant phenotypes. In addition, genetic screening of first-degree relatives can help early identification and diagnosis of individuals at greatest risk for developing cardiomyopathy, allowing to focus clinical resources on high-risk family members.
This paper provides a concise overview of the genetic etiology as well as the clinical utilities and limitations of genetic testing for the heritable cardiomyopathies.
PMCID: PMC2630295  PMID: 19099557

Results 1-3 (3)