PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) 
Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report should therefore provide a clear, concise, accurate, fully interpretative and authoritative answer to the clinical question. The need for harmonizing reporting practice of genetic tests has been recognised by the External Quality Assessment (EQA), providers and laboratories. The ESHG Genetic Services Quality Committee has produced reporting guidelines for the genetic disciplines (biochemical, cytogenetic and molecular genetic). These guidelines give assistance on report content, including the interpretation of results. Selected examples of genetic test reports for all three disciplines are provided in an annexe.
doi:10.1038/ejhg.2013.125
PMCID: PMC3895644  PMID: 23942201
2.  Experience of targeted Usher exome sequencing as a clinical test 
We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service.
doi:10.1002/mgg3.25
PMCID: PMC3907913  PMID: 24498627
Bioinformatics; next-generation sequencing; NSHL; Usher syndrome; variant prioritization
3.  DNA replication is altered in Immunodeficiency Centromeric instability Facial anomalies (ICF) cells carrying DNMT3B mutations 
European Journal of Human Genetics  2012;20(10):1044-1050.
ICF syndrome is a rare autosomal recessive disorder that is characterized by Immunodeficiency, Centromeric instability, and Facial anomalies. In all, 60% of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase. In ICF cells, constitutive heterochromatin is hypomethylated and decondensed, metaphase chromosomes undergo rearrangements (mainly involving juxtacentromeric regions), and more than 700 genes are aberrantly expressed. This work shows that DNA replication is also altered in ICF cells: (i) heterochromatic genes replicate earlier in the S-phase; (ii) global replication fork speed is higher; and (iii) S-phase is shorter. These replication defects may result from chromatin changes that modify DNA accessibility to the replication machinery and/or from changes in the expression level of genes involved in DNA replication. This work highlights the interest of using ICF cells as a model to investigate how DNA methylation regulates DNA replication in humans.
doi:10.1038/ejhg.2012.41
PMCID: PMC3449075  PMID: 22378288
ICF syndrome; DNA replication; DNA methylation
4.  Comprehensive oligonucleotide array-comparative genomic hybridization analysis: new insights into the molecular pathology of the DMD gene 
European Journal of Human Genetics  2012;20(10):1096-1100.
We report on the effectiveness of a custom-designed oligonucleotide-based comparative genomic hybridization microarray (array-CGH) to interrogate copy number across the entire 2.2-Mb genomic region of the DMD gene and its applicability in diagnosis. The high-resolution array-CGH, we developed, successfully detected a series of 42 previously characterized large rearrangements of various size, localization and type (simple or complex deletions, duplications, triplications) and known intronic CNVs/Indels. Moreover, the technique succeeded in identifying a small duplication of only 191 bp in one patient previously negative for DMD mutation. Accurate intronic breakpoints localization by the technique enabled subsequent junction fragments identification by sequencing in 86% of cases (all deletion cases and 62.5% of duplication cases). Sequence examination of the junctions supports a role of microhomology-mediated processes in the occurrence of DMD large rearrangements. In addition, the precise knowledge of the sequence context at the breakpoints and analysis of the resulting consequences on maturation of pre-mRNA contribute to elucidating the cause of discrepancies in phenotype/genotype correlations in some patients. Thereby, the array-CGH proved to be a highly efficient and reliable diagnostic tool, and the new data it provides will have many potential implications in both, clinics and research.
doi:10.1038/ejhg.2012.51
PMCID: PMC3449082  PMID: 22510846
duchenne muscular dystrophy; gene; large rearrangements; comparative genomic hybridization microarray; diagnostic methods
5.  Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing 
Background
Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G.
Methods
Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints.
Results
Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome.
Conclusions
We found that 8 of 23 (35%) of ‘missing’ mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service.
doi:10.1186/1750-1172-8-122
PMCID: PMC3751126  PMID: 23924366
Usher syndrome; USH2A; Deletion; Duplication; Pseudoexon; Multiplex ligation dependant probe amplification (MLPA); Array CGH
6.  Phosphorylated C/EBPβ Influences a Complex Network Involving YY1 and USF2 in Lung Epithelial Cells 
PLoS ONE  2013;8(4):e60211.
The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity. Our data reveal that C/EBPβ cooperates with USF2 and acts antagonistically to YY1 in the control of CFTR expression. Interestingly, YY1, a strong repressor, fails to repress the CFTR activation induced by USF2 through DNA binding competition. Collectively, the data strongly suggest a model by which USF2 functionally interacts with YY1 blocking its inhibitory activity, in favour of C/EBPβ transactivation. Further investigation into the interactions between these three proteins revealed that phosphorylation of C/EBPβ influences the DNA occupancy of YY1 and favours the interaction between USF2 and YY1. This phosphorylation process has several implications in the CFTR transcriptional process, thus evoking an additional layer of complexity to the mechanisms influencing CFTR gene regulation.
doi:10.1371/journal.pone.0060211
PMCID: PMC3613372  PMID: 23560079
7.  Functional analysis of a promoter variant identified in the CFTR gene in cis of a frameshift mutation 
In monogenic diseases, the presence of several sequence variations in the same allele may complicate our understanding of genotype–phenotype relationships. We described new alterations identified in a cystic fibrosis (CF) patient harboring a 48C>G promoter sequence variation associated in cis of a 3532AC>GTA mutation and in trans with the F508del mutation. Functional analyses including in vitro experiments confirmed the deleterious effect of the 3532GTA frameshift mutation through the creation of a premature termination codon. The analyses also revealed that the 48G promoter variant has a negative effect on both transcription and mRNA level, thus demonstrating the importance of analyzing all mutations or sequence variations with potential impact on CF transmembrane conductance regulator processing, even when the two known disease-causing mutations have already been detected. Our results emphasize the need to perform, wherever possible, functional studies that may greatly assist the interpretation of the disease-causing potential of rare mutation-associated sequence variations.
doi:10.1038/ejhg.2011.161
PMCID: PMC3260914  PMID: 21847140
CFTR; promoter sequence variation; frameshift mutation; functional analysis
8.  p.Ser1235Arg should no longer be considered as a cystic fibrosis mutation: results from a large collaborative study 
Among the 1700 mutations reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a missense mutation, p.Ser1235Arg, is a relatively frequent finding. To clarify its clinical significance, we collected data from 104 subjects heterozygous for the mutation p.Ser1235Arg from the French CF network, addressed for various indications including classical CF, atypical phenotypes or carrier screening in subjects with or without a family history. Among them, 26 patients (5 having CF, 10 CBAVD (congenital bilateral absence of the vas deferens) and 11 with CF-like symptoms) and 14 healthy subjects were compound heterozygous for a second CFTR mutation. An exhaustive CFTR gene analysis identified a second mutation in cis of p.Ser1235Arg in all CF patients and in 81.8% CBAVD patients. Moreover, epidemiological data from >2100 individuals found a higher frequency of p.Ser1235Arg in the general population than in CF or CBAVD patients. These data, added to the fact that in silico analysis and functional assays suggest a benign nature of this substitution, give several lines of evidence against an association of p.Ser1235Arg with CF or CBAVD.
doi:10.1038/ejhg.2010.137
PMCID: PMC3039504  PMID: 20717170
cystic fibrosis; diagnosis; genetic counseling; mutation
9.  The USH2A c.2299delG mutation: dating its common origin in a Southern European population 
Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main responsible gene of the three known to be disease causing. It encodes two isoforms of the protein usherin. This protein is part of an interactome that has an essential role in the development and function of inner ear hair cells and photoreceptors. The gene contains 72 exons spanning over a region of 800 kb. Although numerous mutations have been described, the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was previously suggested after the identification of a common core haplotype restricted to 250 kb in the 5′ region that encodes the short usherin isoform. By extending the haplotype analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic single nucleotide polymorphisms, we have been able to define 10 different c.2299delG haplotypes, showing high variability but preserving the previously described core haplotype. An exhaustive c.2299delG/control haplotype study suggests that the major source of variability in the USH2A gene is recombination. Furthermore, we have evidenced twice the amount of recombination hotspots located in the 500 kb region that covers the 3′ end of the gene, explaining the higher variability observed in this region when compared with the 250 kb of the 5′ region. Our data confirm the common ancestral origin of the c.2299delG mutation.
doi:10.1038/ejhg.2010.14
PMCID: PMC2987359  PMID: 20145675
USH2A; c.2299delG; haplotype; dating
10.  Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units 
BMC Bioinformatics  2011;12:135.
Background
Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction of their transmembrane (TM) structure by bioinformatics tools provides interesting insights on the topology of these proteins.
Methods
We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses) in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integral membrane proteins we defined two levels of analysis: G1-HPulses for sliding windows of n = 2 to 6 and G2-HPulses for sliding windows of n = 12 to 16.
Results
The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new concept of transmembrane unit (TMU) that groups together transmembrane helices and segments with potential adjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that corresponded to kinks, partial helices or unannotated structural events. These irregularities could represent key dynamic elements that are alternatively activated depending on the channel status as illustrated by the crystal structures of the lactose permease in different conformations.
Conclusions
Our results open a new way in the understanding of transmembrane secondary structures: hydrophobicity through hydrophobic pulses strongly impacts on such embedded structures and is not confined to define the transmembrane status of amino acids.
doi:10.1186/1471-2105-12-135
PMCID: PMC3110554  PMID: 21545751
11.  New multiplex PCR-based protocol allowing indirect diagnosis of FSHD on single cells: can PGD be offered despite high risk of recombination? 
Molecular pathophysiology of facioscapulohumeral muscular dystrophy (FSHD) involves the heterozygous contraction of the number of tandemly repeated D4Z4 units at chromosome 4q35.2. FSHD is associated with a range of 1–10 D4Z4 units instead of 11–150 in normal controls. Several factors complicate FSHD molecular diagnosis, especially the cis-segregation of D4Z4 contraction with a 4qA allele, whereas D4Z4 shortening is silent both on alleles 4qB and 10q. Discrimination of pathogenic 4q-D4Z4 alleles from highly homologous 10q-D4Z4 arrays requires the use of the conventional Southern blot, which is not suitable at the single-cell level. Preimplantation genetic diagnosis (PGD) is a frequent request from FSHD families with several affected relatives. We aimed to develop a rapid and sensitive PCR-based multiplex approach on single cells to perform an indirect familial segregation study of pathogenic alleles. Among several available polymorphic markers at 4q35.2, the four most proximal (D4S2390, D4S1652, D4S2930 and D4S1523, <1.23 Mb) showing the highest heterozygote frequencies (67–91%) were selected. Five recombination events in the D4S2390-D4S1523 interval were observed among 144 meioses. In the D4S2390-D4Z4 interval, no recombination event occurred among 28 FSHD meioses. Instead, a particular haplotype segregated with both clinical and molecular status, allowing the characterization of an at-risk allele in each tested FSHD family (maximal LOD score 2.98 for θ=0.0). This indirect protocol can easily complement conventional techniques in prenatal diagnosis. Although our multiplex PCR-based approach technically fulfils guidelines for single-cell analysis, the relatively high recombination risk hampers its application to PGD.
doi:10.1038/ejhg.2009.207
PMCID: PMC2987324  PMID: 19935833
FSHD; single cell; multiplex PCR; indirect diagnosis; PGD; recombination
12.  Heterochromatic Genes Undergo Epigenetic Changes and Escape Silencing in Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) Syndrome 
PLoS ONE  2011;6(4):e19464.
Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase.
In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me3, both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found.
doi:10.1371/journal.pone.0019464
PMCID: PMC3084872  PMID: 21559330
14.  A novel double deletion underscores the importance of characterizing end points of the CFTR large rearrangements 
European Journal of Human Genetics  2009;17(12):1683-1687.
Large genomic rearrangements in patients with cystic fibrosis (CF) account for up to 16–24% of CF alleles negative for point mutations in European populations. Herein, we identified a new large rearrangement removing exon 19 in a young CF patient, who hitherto harbored only the F508del mutation. By using LightCycler technology, we successfully and rapidly delineated the deletion end points by determining the relative copy number of a set CFTR sequence from introns 18 to 19. Fine mapping of the sequences bordering its break points was achieved using direct sequencing. We reported the first complex CFTR rearrangement containing two successive deletion events putatively linked. We evidenced the presence of short direct repeats in the vicinity of the deletions suggesting a possible replication slippage model. In this report, we also discussed the putative molecular mechanism and consequences of this complex gene rearrangement, unprecedented in CF. This complex deletion illustrates the importance of delineating the genomic rearrangement to improve our knowledge of the CFTR mutational spectrum and to better understand the molecular mechanism controlling the CFTR expression.
doi:10.1038/ejhg.2009.73
PMCID: PMC2987017  PMID: 19436330
cystic fibrosis; CFTR gene; genomic rearrangement; large deletion
15.  PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome  
The Journal of Clinical Investigation  2010;120(6):1812-1823.
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain–containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein–coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
doi:10.1172/JCI39715
PMCID: PMC2877930  PMID: 20440071
16.  Homozygosity for a null allele of COL3A1 results in recessive Ehlers–Danlos syndrome 
European Journal of Human Genetics  2009;17(11):1411-1416.
So far, mutations in the human COL3A1 gene have been associated with the predominantly inherited Ehlers–Danlos syndrome (EDS), vascular type. Genotype–phenotype correlation perspectives collapsed, as haploinsufficiency, which was long suggested to confer a milder or unrecognized phenotype, was reported in four patients with a phenotype similar to that of vascular EDS. Here, we study a case of recessive EDS in a young consanguineous girl of healthy parents. She fulfilled the vascular EDS criteria for laboratory testing. Total sequencing of COL3A1 cDNA identified a homozygous nucleotide duplication (c.479dupT) resulting in a premature termination codon (p.Lys161GlnfsX45). Studies in genomic DNA showed that this mutation was inherited from each parent. The expression analysis (RT-PCR, quantitative-PCR, immunohistochemistry, WB) showed strong mRNA decay and an absence of type III collagen in the proband. The expected COL3A1 haploinsufficiency in her healthy ascendants did not lead to the manifestations of vascular EDS. This case provides evidence of a stochastic effect of COL3A1 haploinsufficiency in humans, which could be explained by the relation between nonsense-mediated mRNA decay efficiency and the resulting dominant-negative effect depending on the position of the mutation and/or modifying factors. It opens up new perspectives for the understanding of COL3A1 genotype–phenotype correlations, which is required while considering targeted therapy.
doi:10.1038/ejhg.2009.76
PMCID: PMC2986673  PMID: 19455184
Ehlers–Danlos syndrome; COL3A1; recessive
17.  Identification of the minimal combination of clinical features in probands for efficient mutation detection in the FBN1 gene 
European Journal of Human Genetics  2009;17(9):1121-1128.
Mutations identified in the fibrillin-1 (FBN1) gene have been associated with Marfan syndrome (MFS). Molecular analysis of the gene is classically performed in probands with MFS to offer diagnosis for at-risk relatives and in children highly suspected of MFS. However, FBN1 gene mutations are found in an ill-defined group of diseases termed ‘type I fibrillinopathies', which are associated with an increased risk of aortic dilatation and dissection. Thus, there is growing awareness of the need to identify these non-MFS probands, for which FBN1 gene screening should be performed. To answer this need we compiled the molecular data obtained from the screening of the FBN1 gene in 586 probands, which had been addressed to our laboratory for molecular diagnosis. In this group, the efficacy of FBN1 gene screening was high in classical MFS probands (72.5%,), low (58%) in those referred for incomplete MFS and only slight (14.3%) for patients referred as possible MFS. Using recursive partitioning, we found that the best predictor of the identification of a mutation in the FBN1 gene was the presence of features in at least three organ systems, combining one major, and various minor criteria. We also show that our original recommendation of two systems involved with at least one with major criterion represents the minimal criteria because in probands not meeting these criteria, the yield of mutation identification drastically falls. This recommendation should help clinicians and biologists in identifying probands with a high probability of carrying a FBN1 gene mutation, and thus optimize biological resources.
doi:10.1038/ejhg.2009.36
PMCID: PMC2986588  PMID: 19293843
Marfan syndrome; fibrillin-1; mutation analysis
18.  Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation 
Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24-32. We previously showed that a mutation in exons 24-32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called “neonatal” region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24-32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon within exons 24-32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a premature termination codon within exons 24-32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exon 24-32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.
doi:10.1038/ejhg.2008.207
PMCID: PMC2734964  PMID: 19002209
Codon, Nonsense; DNA Mutational Analysis; Ectopia Lentis; genetics; Exons; genetics; Humans; Marfan Syndrome; genetics; Microfilament Proteins; genetics; metabolism; Mutation; Phenotype
19.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals 
Nucleic Acids Research  2009;37(9):e67.
Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.
doi:10.1093/nar/gkp215
PMCID: PMC2685110  PMID: 19339519
20.  Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders – updated European recommendations 
The increasing number of laboratories offering molecular genetic analysis of the CFTR gene and the growing use of commercial kits strengthen the need for an update of previous best practice guidelines (published in 2000). The importance of organizing regional or national laboratory networks, to provide both primary and comprehensive CFTR mutation screening, is stressed. Current guidelines focus on strategies for dealing with increasingly complex situations of CFTR testing. Diagnostic flow charts now include testing in CFTR-related disorders and in fetal bowel anomalies. Emphasis is also placed on the need to consider ethnic or geographic origins of patients and individuals, on basic principles of risk calculation and on the importance of providing accurate laboratory reports. Finally, classification of CFTR mutations is reviewed, with regard to their relevance to pathogenicity and to genetic counselling.
doi:10.1038/ejhg.2008.136
PMCID: PMC2985951  PMID: 18685558
guidelines; recommendations; genetic testing; cystic fibrosis; CFTR; CFTR-related disorders
21.  Heterozygous TGFBR2 mutations in Marfan syndrome 
Nature Genetics  2004;36(8):855-860.
Marfan syndrome (MFS) is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton, and cardiovascular systems and associated with defects in the fibrillin gene (FBN1) at 15q21.1 1. We previously mapped the second locus for MFS (MFS type 2, MFS2, OMIM *154705), at 3p24.2-p25 in a large French family (MS1)2. Identification of a 3p24.1 chromosomal breakpoint disrupting the TGF-beta receptor 2 gene (TGFBR2) in a Japanese MFS patient led us to consider TGFBR2 as the MSF2 gene. We found a Q508Q mutation of TGFBR2 that resulted in abnormal splicing and segregated with MFS2 in MS1. Three other missense mutations were found in four unrelated probands and were shown by luciferase-assays to lead to loss of function of the TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.
doi:10.1038/ng1392
PMCID: PMC2230615  PMID: 15235604
Amino Acid Sequence; Chromosomes, Human, Pair 3; Female; Humans; Male; Marfan Syndrome; genetics; Molecular Sequence Data; Mutation; Pedigree; Receptors, Transforming Growth Factor beta; genetics; Signal Transduction; genetics
22.  Large genomic rearrangements in the CFTR gene contribute to CBAVD 
BMC Medical Genetics  2007;8:22.
Background
By performing extensive scanning of whole coding and flanking sequences of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole CFTR locus in the 32 CBAVD patients with only one or no mutation.
Methods
We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.
Results
We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or CFTRdele2], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or CFTRdele 22_24], in two males carrying a typical CBAVD mutation on the other parental CFTR allele. We present the first bioinformatic tool for exon phasing of the CFTR gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.
Conclusion
Identification of large rearrangements further expands the CFTR mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.
doi:10.1186/1471-2350-8-22
PMCID: PMC1876208  PMID: 17448246
23.  Large genomic rearrangements within the PCDH15 gene are a significant cause of USH1F syndrome 
Molecular Vision  2007;13:102-107.
Purpose
Protocadherin-15 (PCDH15) is one of the five genes currently identified as being mutated in Usher 1 syndrome and defines Usher syndrome type 1F (USH1F). When PCDH15 was systematically analyzed for mutations in a cohort of USH1 patients, a number of deletions were found. Here we characterize these deletions as to extent, position, and breakpoints.
Methods
Microsatellite and single nucleotide polymorphism (SNP) analyses, used in a preliminary survey of an Usher cohort of 31 patients, revealed large deletions in three patients. These deletions were further characterized by semiquantitative PCR assays to narrow down the breakpoints.
Results
The analysis of the three large deletions revealed that all six breakpoints are different. The breakpoint junction was identified in one patient and the four other breakpoints were mapped to 4 kb. There were no specific distinguishing features of the isolated breakpoints.
Conclusions
A complete screen of PCDH15 should include a search for large deletions. Failure to screen for gross genomic rearrangements is likely to significantly lower the mutation detection rate. A likely explanation for the high rate of such deletions is the unusual gene structure. PCDH15 gene spans nearly 1 Mb for a corresponding open reading frame (ORF) of 7,021 bp. The intron sizes of PCDH15 are up to 150 kb, and the first three exons of the gene cover 0.42 Mb. The genomic structure of any gene should be taken into consideration when designing a mutation screening strategy.
PMCID: PMC2533038  PMID: 17277737
24.  Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway 
Nucleic Acids Research  2005;33(16):5271-5290.
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
doi:10.1093/nar/gki837
PMCID: PMC1216340  PMID: 16170155
25.  First molecular screening of deafness in the Altai Republic population 
BMC Medical Genetics  2005;6:12.
Background
We studied the molecular basis of NSHL in Republic of Altai (South Siberia, Russia). The Altaians are the indigenous Asian population of the Altai Mountain region considered as a melting-pot and a dispersion center for world-wide human expansions in the past.
Methods
A total of 76 patients of Altaian, Russian or mixed ethnicity and 130 Altaian controls were analyzed by PCR-DHPLC and sequencing in the GJB2 gene. The GJB6 deletion and the common non-syndromic deafness-causing mitochondrial mutations were also tested when appropriate.
Results
8.3% of the Altaian chromosomes were carrying GJB2 mutations versus 46.9% of the Russian chromosomes. The 235delC mutation was predominant among Altaians, whereas the 35delG mutation was most prevalent among Russian patients.
Conclusion
We found an Asian-specific GJB2 diversity among Altaians, and different GJB2 contribution for deafness in the Altaian and Russian patients. The high carrier frequency of 235delC in Altaians (4.6%) is probably defined by gene drift/founder effect in a particular group. The question whether the Altai region could be one of founder sources for the 235delC mutation widespread in Asia is open.
doi:10.1186/1471-2350-6-12
PMCID: PMC1079841  PMID: 15790391

Results 1-25 (30)