Search tips
Search criteria

Results 1-25 (54)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Genotype to phenotype correlations in cartilage oligomeric matrix protein (COMP) associated chondrodysplasias 
Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) are chondrodysplasias resulting in short limbed dwarfism, joint pain and stiffness and early onset osteoarthritis. All PSACH, and the largest proportion of MED, result from mutations in cartilage oligomeric matrix protein (COMP).
The first mutations in COMP were identified in 1995 in patients with both PSACH and MED and subsequently there has been over 30 publications describing COMP mutations in at least 250 PSACH-MED patients. However, despite these discoveries a methodical analysis of the relationship between COMP mutations and phenotypes has not been undertaken. In particular, there has to date been little correlation between the type and location of a COMP mutation and the resulting phenotype of PSACH or MED.
To determine if genotype to phenotype correlations could be derived for COMP we collated 300 COMP mutations, including 25 recently identified novel mutations. The results of this analysis demonstrate that mutations in specific residues and/or regions of the type III repeats of COMP are significantly associated with either PSACH or MED.
This newly derived genotype to phenotype correlation may aid in determining the prognosis of PSACH and MED, including the prediction of disease severity, and in the long term guide genetic counseling and contribute to the clinical management of patients with these diseases.
PMCID: PMC4051597  PMID: 24595329
Pseudoachondroplasia (PSACH); multiple epiphyseal dysplasia (MED); cartilage oligomeric matrix protein (COMP)
2.  Evidence of Large-Scale Chronic Eutrophication in the Great Barrier Reef: Quantification of Chlorophyll a Thresholds for Sustaining Coral Reef Communities 
Ambio  2013;43(3):361-376.
Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2–0.3 mg m−3) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4–0.45 mg m−3) will need to be decreased to ~0.2 mg m−3 for sustaining coral reef communities.
PMCID: PMC3946114  PMID: 24114070
Coral reefs; Eutrophication; Corallivores; Coral skeletal disease; Coral bleaching
4.  The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: The emerging role of endoplasmic reticulum stress (Review) 
Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. Qualitative defects in cartilage structural proteins result in a broad spectrum of both recessive and dominant GSDs. This review focused on a disease spectrum resulting from mutations in the non-collagenous glycoproteins, cartilage oligomeric matrix protein (COMP) and matrilin-3, which together cause a continuum of phenotypes that are amongst the most common autosomal dominant GSDs. Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) comprise a disease spectrum characterised by varying degrees of disproportionate short stature, joint pain and stiffness and early-onset osteoarthritis. Over the past decade, the generation and deep phenotyping of a range of genetic mouse models of the PSACH and MED disease spectrum has allowed the disease mechanisms to be characterised in detail. Moreover, the generation of novel phenocopies to model specific disease mechanisms has confirmed the importance of endoplasmic reticulum (ER) stress and reduced chondrocyte proliferation as key modulators of growth plate dysplasia and reduced bone growth. Finally, new insight into related musculoskeletal complications (such as myopathy and tendinopathy) has also been gained through the in-depth analysis of targeted mouse models of the PSACH-MED disease spectrum.
PMCID: PMC4432922  PMID: 25824717
skeletal dysplasia; cartilage; endoplasmic reticulum stress; mouse models; disease mechanisms; pseudoachondroplasia; multiple epiphyseal dysplasia
5.  Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna 
Adeno-associated virus serotype 9 (AAV9) vectors have recently been shown to transduce cells throughout the central nervous system of nonhuman primates when injected into the cerebrospinal fluid (CSF), a finding which could lead to a minimally invasive approach to treat genetic and acquired diseases affecting the entire CNS. We characterized the transduction efficiency of two routes of vector administration into the CSF of cynomolgus macaques—lumbar puncture, which is typically used in clinical practice, and suboccipital puncture, which is more commonly used in veterinary medicine. We found that delivery of vector into the cisterna magna via suboccipital puncture is up to 100-fold more efficient for achieving gene transfer to the brain. In addition, we evaluated the inflammatory response to AAV9-mediated GFP expression in the nonhuman primate CNS. We found that while CSF lymphocyte counts increased following gene transfer, there were no clinical or histological signs of immune toxicity. Together these data indicate that delivery of AAV9 into the cisterna magna is an effective method for achieving gene transfer in the CNS, and suggest that adapting this uncommon injection method for human trials could vastly increase the efficiency of gene delivery.
PMCID: PMC4448732  PMID: 26052519
6.  Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia 
Recombinant adeno-associated viral vectors based on serotype 8 (AAV8) transduce liver with superior tropism following intravenous (IV) administration. Previous studies conducted by our lab demonstrated that AAV8-mediated transfer of the human low-density lipoprotein receptor (LDLR) gene driven by a strong liver-specific promoter (thyroxin-binding globulin [TBG]) leads to high level and persistent gene expression in the liver. The approach proved efficacious in reducing plasma cholesterol levels and resulted in the regression of atherosclerotic lesions in a murine model of homozygous familial hypercholesterolemia (hoFH). Prior to advancing this vector, called AAV8.TBG.hLDLR, to the clinic, we set out to investigate vector biodistribution in an hoFH mouse model following IV vector administration to assess the safety profile of this investigational agent. Although AAV genomes were present in all organs at all time points tested (up to 180 days), vector genomes were sequestered mainly in the liver, which contained levels of vector 3 logs higher than that found in other organs. In both sexes, the level of AAV genomes gradually declined and appeared to stabilize 90 days post vector administration in most organs although vector genomes remained high in liver. Vector loads in the circulating blood were high and close to those in liver at the early time point (day 3) but rapidly decreased to a level close to the limit of quantification of the assay. The results of this vector biodistribution study further support a proposed clinical trial to evaluate AAV8 gene therapy for hoFH patients.
PMCID: PMC4003465  PMID: 24070336
7.  Intramuscular Injection of AAV8 in Mice and Macaques Is Associated with Substantial Hepatic Targeting and Transgene Expression 
PLoS ONE  2014;9(11):e112268.
Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.
PMCID: PMC4230988  PMID: 25393537
8.  Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias 
European Journal of Human Genetics  2014;22(11):1278-1282.
Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) are chondrodysplasias resulting in short-limbed dwarfism, joint pain and stiffness and early onset osteoarthritis. All PSACH, and the largest proportion of MED, result from mutations in cartilage oligomeric matrix protein (COMP). The first mutations in COMP were identified in 1995 in patients with both PSACH and MED and subsequently there has been over 30 publications describing COMP mutations in at least 250 PSACH–MED patients. However, despite these discoveries, a methodical analysis of the relationship between COMP mutations and phenotypes has not been undertaken. In particular, there has, to date, been little correlation between the type and location of a COMP mutation and the resulting phenotype of PSACH or MED. To determine if genotype to phenotype correlations could be derived for COMP, we collated 300 COMP mutations, including 25 recently identified novel mutations. The results of this analysis demonstrate that mutations in specific residues and/or regions of the type III repeats of COMP are significantly associated with either PSACH or MED. This newly derived genotype to phenotype correlation may aid in determining the prognosis of PSACH and MED, including the prediction of disease severity, and in the long term guide genetic counselling and contribute to the clinical management of patients with these diseases.
PMCID: PMC4051597  PMID: 24595329
9.  Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism” 
Stem Cell Reports  2014;3(3):379-384.
The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet (“stem cell tourism”) is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market.
•Stem cell tourism is a complex and growing phenomenon that raises various concerns•Physicians play important roles in this market and are often professionally regulated•Key features of professional regulation make it well placed to respond•It is appropriate to use available tools to mitigate risks of stem cell tourism
In this article, Zarzeczny and colleagues explore the use of professional regulation as a tool in responding to physicians’ involvement in the market for unproven stem cell-based interventions (“stem cell tourism”).
PMCID: PMC4266009  PMID: 25241736
10.  Recombinant Adeno-Associated Virus Integration Sites in Murine Liver After Ornithine Transcarbamylase Gene Correction 
Human Gene Therapy  2013;24(5):520-525.
Recombinant adeno-associated viruses (rAAVs) have been tested in humans and other large mammals without adverse events. However, one study of mucopolysaccharidosis VII correction in mice showed repeated integration of rAAV in cells from hepatocellular carcinoma (HCC) in the Dlk1–Dio3 locus, suggesting possible insertional mutagenesis. In contrast, another study found no association of rAAV integration with HCC, raising questions about the generality of associations between liver transformation and integration at Dlk1–Dio3. Here we report that in rAAV-treated ornithine transcarbamylase (Otc)–deficient mice, four examples of integration sites in Dlk1–Dio3 could be detected in specimens from liver nodule/tumors, confirming previous studies of rAAV integration in the Dlk1–Dio3 locus in the setting of another murine model of metabolic disease. In one case, the integrated vector was verified to be present at about one copy per cell, consistent with clonal expansion. Another verified integration site in liver nodule/tumor tissue near the Tax1bp1 gene was also detected at about one copy per cell. The Dlk1–Dio3 region has also been implicated in human HCC and so warrants careful monitoring in ongoing human clinical trials with rAAV vectors.
Zhong and colleagues use deep sequencing to examine the distribution of integrated AAV genomes in nodules/tumors from the livers of ornithine transcarbamylace (Otc) deficient mice. Using this approach, they report four examples of integration sites in the Dlk1-Dio3 locus; this site has previously been implicated in human hepatocellular carcinoma and may warrant careful monitoring in human clinical trials using AAV vectors.
PMCID: PMC3655627  PMID: 23621841
11.  Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33 
Journal of Virology  2013;87(17):9473-9485.
Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33.
PMCID: PMC3754105  PMID: 23720715
12.  Abnormal Chondrocyte Apoptosis in the Cartilage Growth Plate is Influenced by Genetic Background and Deletion of CHOP in a Targeted Mouse Model of Pseudoachondroplasia 
PLoS ONE  2014;9(2):e85145.
Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechanisms remain largely unknown. T585M COMP mutant mice are a model of moderate PSACH and demonstrate a mild ER stress response. Although mutant COMP is not retained in significant quantities within the ER of chondrocytes, both BiP and the pro-apoptotic ER stress-related transcription factor CHOP are mildly elevated, whilst bcl-2 levels are decreased, resulting in increased and spatially dysregulated chondrocyte apoptosis. To determine whether the abnormal chondrocyte apoptosis observed in the growth plate of mutant mice is CHOP-mediated, we bred T585M COMP mutant mice with CHOP-null mice to homozygosity, and analysed the resulting phenotype. Although abnormal apoptosis was alleviated in the resting zone following CHOP deletion, the mutant growth plates were generally more disorganised. Furthermore, the bone lengths of COMP mutant CHOP null mice were significantly shorter at 9 weeks of age when compared to the COMP mutant mice, including a significant difference in the skull length. Overall, these data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.
PMCID: PMC3928032  PMID: 24558358
13.  Adeno-Associated Virus Serotype 8 Gene Therapy Leads to Significant Lowering of Plasma Cholesterol Levels in Humanized Mouse Models of Homozygous and Heterozygous Familial Hypercholesterolemia 
Human Gene Therapy  2012;24(1):19-26.
Familial hypercholesterolemia (FH) is a life-threatening genetic disease caused by mutations in the gene encoding low-density lipoprotein receptor (LDLR). As a bridge to clinical trials, we generated a “humanized” mouse model lacking LDLR and apolipoprotein B (ApoB) mRNA editing catalytic polypeptide-1 (APOBEC-1) expression and expressing a human ApoB100 transgene in order to permit more authentic simulation of in vivo interactions between the clinical transgene product, human LDLR (hLDLR), and its endogenous ligand, human ApoB100. On a chow diet, the humanized LDLR-deficient mice have substantial hypercholesterolemia and a lipoprotein phenotype more closely resembling human homozygous FH (hoFH) than in previous mouse models of FH. On injection of an adeno-associated virus serotype 8 (AAV8) vector encoding the human LDLR cDNA, significant correction of hypercholesterolemia was realized at doses as low as 1.5×1011 genome copies (GC)/kg. Given that some patients with heterozygous FH (heFH) cannot be adequately treated with current therapy, we then extended our studies to similarly “humanized” mice that were heterozygous for LDLR deficiency, and that have a lipoprotein phenotype resembling heterozygous FH. Injection of AAV8-hLDLR brought about significant reduction in total and LDL cholesterol at doses as low as 5×1011 GC/kg. Collectively, these data demonstrate the safety and efficacy of the liver-specific AAV8-hLDLR vector in the treatment of humanized mice modeling both hoFH and heFH.
Kassim and colleagues demonstrate that injection of an adeno-associated virus serotype 8 (AAV8) vector encoding the human low-density lipoprotein receptor (LDLR) cDNA results in significant correction of hypercholesterolemia in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia (FH).
PMCID: PMC3555111  PMID: 22985273
14.  A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth 
Disease Models & Mechanisms  2013;6(6):1414-1425.
Disease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM) alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER) of resting and proliferating chondrocytes. Previous studies on this mutant protein have shown that it induces intracellular aggregates and causes cell stress and death in the thyroid gland. The expression and retention of this exogenous mutant protein in resting and proliferating chondrocytes resulted in a chronic cell stress response, growth plate dysplasia and reduced bone growth, without inducing any alterations to the architecture and organization of the cartilage ECM. More significantly, the decreased bone growth seemed to be the direct result of reduced chondrocyte proliferation in the proliferative zone of growth plates in transgenic mice, without transcriptional activation of a classical unfolded protein response (UPR) or apoptosis. Overall, these data show that mutant protein retention in the ER of resting and proliferative zone chondrocytes is sufficient to cause disrupted bone growth. The specific disease pathways triggered by mutant protein retention do not necessarily involve a prototypic UPR, but all pathways impact upon chondrocyte proliferation in the cartilage growth plate.
PMCID: PMC3820264  PMID: 24046357
15.  Armet/Manf and Creld2 are components of a specialized ER stress response provoked by inappropriate formation of disulphide bonds: implications for genetic skeletal diseases 
Human Molecular Genetics  2013;22(25):5262-5275.
Mutant matrilin-3 (V194D) forms non-native disulphide bonded aggregates in the rER of chondrocytes from cell and mouse models of multiple epiphyseal dysplasia (MED). Intracellular retention of mutant matrilin-3 causes endoplasmic reticulum (ER) stress and induces an unfolded protein response (UPR) including the upregulation of two genes recently implicated in ER stress: Armet and Creld2. Nothing is known about the role of Armet and Creld2 in human genetic diseases. In this study, we used a variety of cell and mouse models of chondrodysplasia to determine the genotype-specific expression profiles of Armet and Creld2. We also studied their interactions with various mutant proteins and investigated their potential roles as protein disulphide isomerases (PDIs). Armet and Creld2 were up-regulated in cell and/or mouse models of chondrodysplasias caused by mutations in Matn3 and Col10a1, but not Comp. Intriguingly, both Armet and Creld2 were also secreted into the ECM of these disease models following ER stress. Armet and Creld2 interacted with mutant matrilin-3, but not with COMP, thereby validating the genotype-specific expression. Substrate-trapping experiments confirmed Creld2 processed PDI-like activity, thus identifying a putative functional role. Finally, alanine substitution of the two terminal cysteine residues from the A-domain of V194D matrilin-3 prevented aggregation, promoted mutant protein secretion and reduced the levels of Armet and Creld2 in a cell culture model. We demonstrate that Armet and Creld2 are genotype-specific ER stress response proteins with substrate specificities, and that aggregation of mutant matrilin-3 is a key disease trigger in MED that could be exploited as a potential therapeutic target.
PMCID: PMC3842181  PMID: 23956175
16.  Correction: AAV9 Targets Cone Photoreceptors in the Nonhuman Primate Retina 
PLoS ONE  2013;8(8):10.1371/annotation/64b90996-4634-4c63-b737-634397b0b445.
PMCID: PMC3738648
17.  Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures 
Biology Open  2013;2(8):802-811.
Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM) in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration.
Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis.
Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis.
We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.
PMCID: PMC3744072  PMID: 23951406
Cartilage; Genetic skeletal disease; Proteomics; Pseudoachondroplasia; Multiple epiphyseal dysplasia
18.  CpG-depleted adeno-associated virus vectors evade immune detection 
The Journal of Clinical Investigation  2013;123(7):2994-3001.
Due to their efficient transduction potential, adeno-associated virus (AAV) vectors are leading candidates for gene therapy in skeletal muscle diseases. However, immune responses toward the vector or transgene product have been observed in preclinical and clinical studies. TLR9 has been implicated in promoting AAV-directed immune responses, but vectors have not been developed to circumvent this barrier. To assess the requirement of TLR9 in promoting immunity toward AAV-associated antigens following skeletal muscle gene transfer in mice, we compared immunological responses in WT and Tlr9-deficient mice that received an AAV vector with an immunogenic capsid, AAVrh32.33. In Tlr9-deficient mice, IFN-γ T cell responses toward capsid and transgene antigen were suppressed, resulting in minimal cellular infiltrate and stable transgene expression in target muscles. These findings suggest that AAV-directed immune responses may be circumvented by depleting the ligand for TLR9 (CpG sequences) from the vector genome. Indeed, we found that CpG-depleted AAVrh32.33 vectors could establish persistent transgene expression, evade immunity, and minimize infiltration of effector cells. Thus, CpG-depleted AAV vectors could improve outcome of clinical trials of gene therapy for skeletal muscle disease.
PMCID: PMC3696560  PMID: 23778142
19.  Hepatic Gene Transfer in Neonatal Mice by Adeno-Associated Virus Serotype 8 Vector 
Human Gene Therapy  2011;23(5):533-539.
For genetic diseases that manifest at a young age with irreversible consequences, early treatment is critical and essential. Neonatal gene therapy has the advantages of achieving therapeutic effects before disease manifestation, a low vector requirement and high vector-to-cell ratio, and a relatively immature immune system. Therapeutic effects or long-term rescue of neonatal lethality have been demonstrated in several animal models. However, vigorous cell proliferation in the newborn stage is a significant challenge for nonintegrating vectors, such as adeno-associated viral (AAV) vector. Slightly delaying the injection age, and readministration at a later time, are two of the alternative strategies to solve this problem. In this study, we demonstrated robust and efficient hepatic gene transfer by self-complementary AAV8 vector in neonatal mice. However, transduction quickly decreased over a few weeks because of vector dilution caused by fast proliferation. Delaying the injection age improved sustained expression, although it also increased neutralizing antibody (NAb) responses to AAV capsid. This approach can be used to treat genetic diseases with slow progression. For genetic diseases with early onset and severe consequences, early treatment is essential. A second injection of vector of a different serotype at a later time may overcome preexisting NAb and achieve sustained therapeutic effects.
Wang and colleagues conduct a series of preclinical animal studies examining the kinetics of AAV gene transfer. They demonstrate that self-complementary AAV8 results in robust and efficient hepatic gene transfer in neonatal mice. Yet, this transduction quickly decreases over a few weeks because of vector dilution caused by rapid cell proliferation in the liver of growing young mice.
PMCID: PMC3360497  PMID: 22098408
20.  Preclinical Evaluation of a Clinical Candidate AAV8 Vector for Ornithine Transcarbamylase (OTC) Deficiency Reveals Functional Enzyme from Each Persisting Vector Genome 
Molecular Genetics and Metabolism  2011;105(2):203-211.
Ornithine transcarbamylase deficiency (OTCD), the most common and severe urea cycle disorder, is an excellent model for developing liver-directed gene therapy. No curative therapy exists except for liver transplantation which is limited by available donors and carries significant risk of mortality and morbidity. Adeno-associated virus 8 (AAV8) has been shown to be the most efficient vector for liver-directed gene transfer and is currently being evaluated in a clinical trial for treating hemophilia B. In this study, we generated a clinical candidate vector for a proposed OTC gene therapy trial in humans based on a self-complementary AAV8 vector expressing codon-optimized human OTC (hOTCco) under the control of a liver-specific promoter. Codon-optimization dramatically improved the efficacy of OTC gene therapy. Supraphysiological expression levels and activity of hOTC were achieved in adult spfash mice following a single intravenous injection of hOTCco vector. Vector doses as low as 1×1010 genome copies (GC) achieved robust and sustained correction of the OTCD biomarker orotic aciduria and clinical protection against an ammonia challenge. Functional expression of hOTC in 40% of liver areas was found in mice treated with a low vector dose of 1×109 GC. We suggest that the clinical candidate vector we have developed has the potential to achieve therapeutic effects in OTCD patients.
PMCID: PMC3270700  PMID: 22133298
Adeno-associated viruses (AAV); liver gene therapy; ornithine transcarbamylase deficiency (OTCD); codon optimization
21.  RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model 
We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model.
XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset.
Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration.
RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy.
Progress in treating canine RPGR disease prompted us to characterize patients with RPGR-ORF15 mutations and provide a detailed natural history of a novel Rpgr-mutant mouse for further proof-of-concept experiments.
PMCID: PMC3422104  PMID: 22807293
22.  AAV9 Targets Cone Photoreceptors in the Nonhuman Primate Retina 
PLoS ONE  2013;8(1):e53463.
Transduction of retinal pigment epithelial cells with an adeno-associated viral vector (AAV) based on serotype 2 has partially corrected retinal blindness in Leber congenital amaurosis type 2. However, many applications of gene therapy for retinal blindness rely on the efficient transduction of rod and cone photoreceptor which is difficult to achieve with first generation vector technology. To address this translational need, we evaluated rod and cone photoreceptor targeting of 4 novel AAV capsids (AAV7, AAV9, rh.64R1 and rh.8R) versus AAV2 and AAV8 in a foveated retina. Eyes of 20 nonhuman primates were injected subretinally in the proximity of the fovea. While numerous vectors efficiently transduced rods, only AAV9 targeted cones both centrally and peripherally efficiently at low doses, likely due to the abundance of galactosylated glycans, the primary receptor for AAV9, on cone photoreceptors. We conclude AAV9 is an ideal candidate for strategies that require restoration of cone photoreceptor function.
PMCID: PMC3559681  PMID: 23382846
23.  Impact of Pre-Existing Immunity on Gene Transfer to Nonhuman Primate Liver with Adeno-Associated Virus 8 Vectors 
Human Gene Therapy  2011;22(11):1389-1401.
Vectors based on the primate-derived adeno-associated virus serotype 8 (AAV8) are being evaluated in preclinical and clinical models. Natural infections with related AAVs activate memory B cells that produce antibodies capable of modulating the efficacy and safety of the vector. We have evaluated the biology of AAV8 gene transfer in macaque liver, with a focus on assessing the impact of pre-existing humoral immunity. Twenty-one macaques with various levels of AAV neutralizing antibody (NAb) were injected intravenously with AAV8 vector expressing green fluorescent protein. Pre-existing antibody titers in excess of 1:10 substantially diminished hepatocyte transduction that, in the absence of NAbs, was highly efficient. Vector-specific NAb diminished liver deposition of genomes and unexpectedly increased genome distribution to the spleen. The majority of animals showed high-level and stable sequestration of vector capsid protein by follicular dendritic cells of splenic germinal centers. These studies illustrate how natural immunity to a virus that is related to a vector can impact the efficacy and potential safety of in vivo gene therapy. We propose to use the in vitro transduction inhibition assay to evaluate research subjects before gene therapy and to preclude from systemic AAV8 trials those that have titers in excess of 1:10.
Wang and colleagues evaluate the impact of preexisting humoral immunity on adeno-associated virus 8 (AAV8)-mediated gene transfer to macaque livers. They injected AAV8 vectors expressing green fluorescent protein into 21 macaques with various levels of AAV-neutralizing antibody (Nab), and found that NAb titers above 1:10 significantly impaired transduction and affected distribution of vector genomes.
PMCID: PMC3225046  PMID: 21476868
24.  Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates 
Molecular Genetics and Metabolism  2011;104(3):395-403.
Gene transfer vectors based on adeno-associated virus 8 (AAV8) are highly efficient in liver transduction and can be easily administered by intravenous injection. In mice, AAV8 transduces predominantly hepatocytes near central veins and yields lower transduction levels in hepatocytes in periportal regions. This transduction bias has important implications for gene therapy that aims to correct metabolic liver enzymes because metabolic zonation along the porto-central axis requires the expression of therapeutic proteins within the zone where they are normally localized.
In the present study we compared the expression pattern of AAV8 expressing green fluorescent protein (GFP) in liver between mice, dogs, and non-human primates. We confirmed the pericentral dominance in transgene expression in mice with AAV8 when the liver-specific thyroid hormone-binding globulin (TBG) promoter was used but also observed the same expression pattern with the ubiquitous chicken β-actin (CB) and cytomegalovirus (CMV) promoters, suggesting that transduction zonation is not caused by promoter specificity. Predominantly pericentral expression was also found in dogs injected with AAV8. In contrast, in cynomolgus and rhesus macaques the expression pattern from AAV vectors was reversed, i.e. transgene expression was most intense around portal areas and less intense or absent around central veins. Infant rhesus macaques as well as newborn mice injected with AAV8 however showed a random distribution of transgene expression with neither portal nor central transduction bias. Based on the data in monkeys, adult humans treated with AAV vectors are predicted to also express transgenes predominantly in periportal regions whereas infants are likely to show a uniform transduction pattern in liver.
PMCID: PMC3269907  PMID: 21778099
gene therapy; AAV; liver; animal models
25.  Sustained Correction of OTC Deficiency in Spf ash mice Using Optimized Self-complementary AAV2/8 Vectors 
Gene Therapy  2011;19(4):404-410.
Ornithine transcarbamylase deficiency (OTCD) is the most common inborn error of urea synthesis. Complete OTCD can result in hyperammonemic coma in the neonatal period which can rapidly become fatal. Current acute therapy involves dialysis; chronic therapy involves the stimulation of alternate nitrogen clearance pathways; and the only curative approach is liver transplantation. AAV vector based gene therapy would add to current treatment options provided the vector delivers high level and stable transgene expression in liver without dose limiting toxicity. In this study, we employed an AAV2/8-based self-complementary (sc) vector expressing the murine OTC gene under a liver-specific thyroxine-binding globulin (TBG) promoter and examined the therapeutic effects in a mouse model of OTCD, the spf ash mouse. Seven days after a single intravenous injection of vector, treated mice showed complete normalization of urinary orotic acid, a measure of OTC activity. We further improved vector efficacy by incorporating a Kozak or Kozak-like sequence into mOTC cDNA which increased the OTC activity by 5- or 2-fold and achieved sustained correction of orotic aciduria for up to 7 months. Our results demonstrate that vector optimizations can significantly improve the efficacy of gene therapy.
PMCID: PMC3321078  PMID: 21850052
Adeno-associated viruses (AAV); liver gene therapy; OTC deficiency; self-complementary

Results 1-25 (54)