Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Cell Specific eQTL Analysis without Sorting Cells 
PLoS Genetics  2015;11(5):e1005223.
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.
Author Summary
Many variants in the genome, including variants associated with disease, affect the expression of genes. These so-called expression quantitative trait loci (eQTL) can be used to gain insight in the downstream consequences of disease. While it has been shown that many disease-associated variants alter gene expression in a cell-type dependent manner, eQTL datasets for specific cell types may not always be available and their sample size is often limited. We present a method that is able to detect cell type specific effects within eQTL datasets that have been generated from whole tissues (which may be composed of many cell types), in our case whole blood. By combining numerous whole blood datasets through meta-analysis, we show that we are able to detect eQTL effects that are specific for neutrophils and lymphocytes (two blood cell types). Additionally, we show that the variants associated with some diseases may preferentially alter the gene expression in one of these cell types. We conclude that our method is an alternative method to detect cell type specific eQTL effects, that may complement generating cell type specific eQTL datasets and that may be applied on other cell types and tissues as well.
PMCID: PMC4425538  PMID: 25955312
2.  Evaluation of the applicability of the Immuno-solid-phase allergen chip (ISAC) assay in atopic patients in Singapore 
Molecular-based allergy diagnostics are gaining popularity in clinical practice. Our aim was to evaluate their role in the tropics, given the inherent genetic and environmental differences.
We recruited subjects with history of atopy and collected data on demographics and atopic symptoms using validated questionnaires. Subjects underwent a series of skin prick tests (SPT). Serum total and specific IgE levels were measured using ImmunoCAP FEIA and ImmunoCAP ISAC®, respectively. We describe their pattern of sensitization and agreement between test methods.
A total of 135 subjects were recruited; mean ± SD age of 31.18 ± 12.72 years, 52.7% female. Allergic rhinitis (AR) was the most prevalent clinical manifestation of atopy (70.7%), followed by atopic dermatitis (AD) (50.5%) and asthma (26.2%). Polysensitization was seen in 51.1% of subjects by both SPT and ISAC. House dust mites (HDM) were the dominant allergen, with sensitization in 67.8% and 62% of subjects on SPT and ISAC, respectively. A group of subjects with monosensitization to B. tropicalis was identified. HDM sensitization was strongly associated with AR, while AD and asthma were not associated with sensitization to any allergen. Agreement between SPT and ISAC was mostly suboptimal. Greatest agreement was documented for the measurement of HDM sensitization with both methods (κ = 0.64). Sensitization to the bulk of the remaining allergens in the ISAC panel was infrequent.
Multiplex methods should not be used as a screening tool, especially in a population with lower rates of polysensitization and a dominant sensitizing allergen. There may be a role in adjusting the antigen spectrum in the ISAC panel to regional differences.
Electronic supplementary material
The online version of this article (doi:10.1186/s13601-015-0053-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4349609  PMID: 25741438
ISAC; Specific IgE; Atopy; Sensitization; Skin prick test
3.  Genetic analysis of an allergic rhinitis cohort reveals an intercellular epistasis between FAM134B and CD39 
BMC Medical Genetics  2014;15:73.
Extracellular ATP is a pro-inflammatory molecule released by damaged cells. Regulatory T cells (Treg) can suppress inflammation by hydrolysing this molecule via ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), also termed as CD39. Multiple studies have reported differences in CD39+ Treg percentages in diseases such as multiple sclerosis, Hepatitis B and HIV-1. In addition, CD39 polymorphisms have been implicated in immune-phenotypes such as susceptibility to inflammatory bowel disease and AIDS progression. However none of the studies published so far has linked disease-associated variants with differences in CD39 Treg surface expression. This study aims at identifying variants affecting CD39 expression on Treg and at evaluating their association with allergic rhinitis, a disease characterized by a strong Treg involvement.
Cohorts consisting of individuals of different ethnicities were employed to identify any association of CD39 variants to surface expression. Significant variant(s) were tested for disease association in a published GWAS cohort by one-locus and two-locus genetic analyses based on logistic models. Further functional characterization was performed using existing microarray data and quantitative RT-PCR on sorted cells.
Our study shows that rs7071836, a promoter SNP in the CD39 gene region, affects the cell surface expression on Treg cells but not on other CD39+ leukocyte subsets. Epistasis analysis revealed that, in conjunction with a SNP upstream of the FAM134B gene (rs257174), it increased the risk of allergic rhinitis (P = 1.98 × 10-6). As a promoter SNP, rs257174 controlled the expression of the gene in monocytes but, notably, not in Treg cells. Whole blood transcriptome data of three large cohorts indicated an inverse relation in the expression of the two proteins. While this observation was in line with the epistasis data, it also implied that a functional link must exist. Exposure of monocytes to extracellular ATP resulted in an up-regulation of FAM134B gene expression, suggesting that extracellular ATP released from damaged cells represents the connection for the biological interaction of CD39 on Treg cells with FAM134B on monocytes.
The interplay between promoter SNPs of CD39 and FAM134B results in an intercellular epistasis which influences the risk of a complex inflammatory disease.
PMCID: PMC4094447  PMID: 24970562
Epistasis; Treg; Monocyte; eQTLs; Allergic rhinitis
4.  Investigating highly replicated asthma genes as candidate genes for allergic rhinitis 
BMC Medical Genetics  2013;14:51.
Asthma genetics has been extensively studied and many genes have been associated with the development or severity of this disease. In contrast, the genetic basis of allergic rhinitis (AR) has not been evaluated as extensively. It is well known that asthma is closely related with AR since a large proportion of individuals with asthma also present symptoms of AR, and patients with AR have a 5–6 fold increased risk of developing asthma. Thus, the relevance of asthma candidate genes as predisposing factors for AR is worth investigating. The present study was designed to investigate if SNPs in highly replicated asthma genes are associated with the occurrence of AR.
A total of 192 SNPs from 21 asthma candidate genes reported to be associated with asthma in 6 or more unrelated studies were genotyped in a Swedish population with 246 AR patients and 431 controls. Genotypes for 429 SNPs from the same set of genes were also extracted from a Singapore Chinese genome-wide dataset which consisted of 456 AR cases and 486 controls. All SNPs were subsequently analyzed for association with AR and their influence on allergic sensitization to common allergens.
A limited number of potential associations were observed and the overall pattern of P-values corresponds well to the expectations in the absence of an effect. However, in the tests of allele effects in the Chinese population the number of significant P-values exceeds the expectations. The strongest signals were found for SNPs in NPSR1 and CTLA4. In these genes, a total of nine SNPs showed P-values <0.001 with corresponding Q-values <0.05. In the NPSR1 gene some P-values were lower than the Bonferroni correction level. Reanalysis after elimination of all patients with asthmatic symptoms excluded asthma as a confounding factor in our results. Weaker indications were found for IL13 and GSTP1 with respect to sensitization to birch pollen in the Swedish population.
Genetic variation in the majority of the highly replicated asthma genes were not associated to AR in our populations which suggest that asthma and AR could have less in common than previously anticipated. However, NPSR1 and CTLA4 can be genetic links between AR and asthma and associations of polymorphisms in NPSR1 with AR have not been reported previously.
PMCID: PMC3653682  PMID: 23663310
Allergic rhinitis; Association; Asthma; Case–control; Replication
5.  Poor Reproducibility of Allergic Rhinitis SNP Associations 
PLoS ONE  2013;8(1):e53975.
Replication of reported associations is crucial to the investigation of complex disease. More than 100 SNPs have previously been reported as associated with allergic rhinitis (AR), but few of these have been replicated successfully. To investigate the general reproducibility of reported AR-associations in candidate gene studies, one Swedish (352 AR-cases, 709 controls) and one Singapore Chinese population (948 AR-cases, 580 controls) were analyzed using 49 AR-associated SNPs. The overall pattern of P-values indicated that very few of the investigated SNPs were associated with AR. Given published odds ratios (ORs) most SNPs showed high power to detect an association, but no correlations were found between the ORs of the two study populations or with published ORs. None of the association signals were in common to the two genome-wide association studies published in AR, indicating that the associations represent false positives or have much lower effect-sizes than reported.
PMCID: PMC3559641  PMID: 23382861
6.  Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study 
BMC Medical Genetics  2012;13:66.
The Toll-like receptor proteins are important in host defense and initiation of the innate and adaptive immune responses. A number of studies have identified associations between genetic variation in the Toll-like receptor genes and allergic disorders such as asthma and allergic rhinitis. The present study aim to search for genetic variation associated with allergic rhinitis in the Toll-like receptor genes.
A first association analysis genotyped 73 SNPs in 182 cases and 378 controls from a Swedish population. Based on these results an additional 24 SNPs were analyzed in one Swedish population with 352 cases and 709 controls and one Chinese population with 948 cases and 580 controls.
The first association analysis identified 4 allergic rhinitis-associated SNPs in the TLR7-TLR8 gene region. Subsequent analysis of 24 SNPs from this region identified 7 and 5 significant SNPs from the Swedish and Chinese populations, respectively. The corresponding risk-associated haplotypes are significant after Bonferroni correction and are the most common haplotypes in both populations. The associations are primarily detected in females in the Swedish population, whereas it is seen in males in the Chinese population. Further independent support for the involvement of this region in allergic rhinitis was obtained from quantitative skin prick test data generated in both populations.
Haplotypes in the TLR7-TLR8 gene region were associated with allergic rhinitis in one Swedish and one Chinese population. Since this region has earlier been associated with asthma and allergic rhinitis in a Danish linkage study this speaks strongly in favour of this region being truly involved in the development of this disease.
PMCID: PMC3459792  PMID: 22857391
Allergic rhinitis; Toll-like receptor; Polymorphism; Genetics; Haplotype; Case–control
7.  Genome-wide association study identifies PERLD1 as asthma candidate gene 
BMC Medical Genetics  2011;12:170.
Recent genome-wide association studies (GWAS) for asthma have been successful in identifying novel associations which have been well replicated. The aim of this study is to identify the genetic variants that influence predisposition towards asthma in an ethnic Chinese population in Singapore using a GWAS approach.
A two-stage GWAS was performed in case samples with allergic asthma, and in control samples without asthma and atopy. In the discovery stage, 490 case and 490 control samples were analysed by pooled genotyping. Significant associations from the first stage were evaluated in a replication cohort of 521 case and 524 control samples in the second stage. The same 980 samples used in the discovery phase were also individually genotyped for purposes of a combined analysis. An additional 1445 non-asthmatic atopic control samples were also genotyped.
19 promising SNPs which passed our genome-wide P value threshold of 5.52 × 10-8 were individually genotyped. In the combined analysis of 1011 case and 1014 control samples, SNP rs2941504 in PERLD1 on chromosome 17q12 was found to be significantly associated with asthma at the genotypic level (P = 1.48 × 10-6, ORAG = 0.526 (0.369-0.700), ORAA = 0.480 (0.361-0.639)) and at the allelic level (P = 9.56 × 10-6, OR = 0.745 (0.654-0.848)). These findings were found to be replicated in 3 other asthma GWAS studies, thus validating our own results. Analysis against the atopy control samples suggested that the SNP was associated with allergic asthma and not to either the asthma or allergy components. Genotyping of additional SNPs in 100 kb flanking rs2941504 further confirmed that the association was indeed to PERLD1. PERLD1 is involved in the modification of the glycosylphosphatidylinositol anchors for cell surface markers such as CD48 and CD59 which are known to play multiple roles in T-cell activation and proliferation.
These findings reveal the association of a PERLD1 as a novel asthma candidate gene and reinforce the involvement of genes on the 17q12-21 chromosomal region in the etiology of asthma.
PMCID: PMC3268734  PMID: 22188591
8.  Genome-Wide Association Study for Atopy and Allergic Rhinitis in a Singapore Chinese Population 
PLoS ONE  2011;6(5):e19719.
Allergic rhinitis (AR) is an atopic disease which affects about 600 million people worldwide and results from a complex interplay between genetic and environmental factors. However genetic association studies on known candidate genes yielded variable results. The aim of this study is to identify the genetic variants that influence predisposition towards allergic rhinitis in an ethnic Chinese population in Singapore using a genome-wide association study (GWAS) approach. A total of 4461 ethnic Chinese volunteers were recruited in Singapore and classified according to their allergic disease status. The GWAS included a discovery stage comparing 515 atopic cases (including 456 AR cases) and 486 non-allergic non-rhinitis (NANR) controls. The top SNPs were then validated in a replication cohort consisting of a separate 2323 atopic cases (including 676 AR cases) and 511 NANR controls. Two SNPs showed consistent association in both discovery and replication phases; MRPL4 SNP rs8111930 on 19q13.2 (OR = 0.69, Pcombined = 4.46×10−05) and BCAP SNP rs505010 on chromosome 10q24.1 (OR = 0.64, Pcombined = 1.10×10−04). In addition, we also replicated multiple associations within known candidates regions such as HLA-DQ and NPSR1 locus in the discovery phase. Our study suggests that MRPL4 and BCAP, key components of the HIF-1α and PI3K/Akt signaling pathways respectively, are two novel candidate genes for atopy and allergic rhinitis. Further study on these molecules and their signaling pathways would help in understanding of the pathogenesis of allergic rhinitis and identification of targets for new therapeutic intervention.
PMCID: PMC3098846  PMID: 21625490
9.  Variation in Uteroglobin-Related Protein 1 (UGRP1) gene is associated with Allergic Rhinitis in Singapore Chinese 
BMC Medical Genetics  2011;12:39.
Uteroglobin-Related Protein 1 (UGRP1) is a secretoglobulin protein which has been suggested to play a role in lung inflammation and allergic diseases. UGRP1 has also been shown to be an important pneumoprotein, with diagnostic potential as a biomarker of lung damage. Previous genetic studies evaluating the association between variations on UGRP1 and allergic phenotypes have yielded mixed results. The aim of this present study was to identify genetic polymorphisms in UGRP1 and investigate if they were associated with asthma and allergic rhinitis in the Singapore Chinese population.
Resequencing of the UGRP1 gene was conducted on 40 randomly selected individuals from Singapore of ethnic Chinese origin. The polymorphisms identified were then tagged and genotyped in a population of 1893 Singapore Chinese individuals. Genetic associations were evaluated in this population comparing 795 individuals with allergic rhinitis, 718 with asthma (of which 337 had both asthma and allergic rhinitis) and 717 healthy controls with no history of allergy or allergic diseases.
By resequencing the UGRP1 gene within our population, we identified 11 novel and 16 known single nucleotide polymorphisms (SNPs). TagSNPs were then genotyped, revealing a significant association between rs7726552 and allergic rhinitis (Odds Ratio: 0.81, 95% Confidence Interval: 0.66-0.98, P = 0.039). This association remained statistically significant when it was analyzed genotypically or when stratified according to haplotypes. When variations on UGRP1 were evaluated against asthma, no association was observed.
This study documents the association between polymorphisms in UGRP1 and allergic rhinitis, suggesting a potential role in its pathogenesis.
PMCID: PMC3070627  PMID: 21410962
10.  Evaluating the transferability of Hapmap SNPs to a Singapore Chinese population 
BMC Genetics  2010;11:36.
The International Hapmap project serves as a valuable resource for human genome variation data, however its applicability to other populations has yet to be exhaustively investigated. In this paper, we use high density genotyping chips and resequencing strategies to compare the Singapore Chinese population with the Hapmap populations. First we compared 1028 and 114 unrelated Singapore Chinese samples genotyped using the Illumina Human Hapmap 550 k chip and Affymetrix 500 k array respectively against the 270 samples from Hapmap. Secondly, data from 20 candidate genes on 5q31-33 resequenced for an asthma candidate gene based study was also used for the analysis.
A total of 237 SNPs were identified through resequencing of which only 95 SNPs (40%) were in Hapmap; however an additional 56 SNPs (24%) were not genotyped directly but had a proxy SNP in the Hapmap. At the genome-wide level, Singapore Chinese were highly correlated with Hapmap Han Chinese with correlation of 0.954 and 0.947 for the Illumina and Affymetrix platforms respectively with deviant SNPs randomly distributed within and across all chromosomes.
The high correlation between our population and Hapmap Han Chinese reaffirms the applicability of Hapmap based genome-wide chips for GWA studies. There is a clear population signature for the Singapore Chinese samples and they predominantly resemble the southern Han Chinese population; however when new migrants particularly those with northern Han Chinese background were included, population stratification issues may arise. Future studies needs to address population stratification within the sample collection while designing and interpreting GWAS in the Chinese population.
PMCID: PMC2877651  PMID: 20459637

Results 1-10 (10)