PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Genetic Analysis through OtoSeq of Pakistani Families Segregating Prelingual Hearing Loss 
Objective
To identify the genetic cause of prelingual sensorineural hearing loss in Pakistani families using a next-generation sequencing (NGS)-based mutation screening test named OtoSeq.
Study Design
Prospective Study
Setting
Research laboratory
Subjects and Methods
We used three fluorescently labeled short tandem repeat (STR) markers for each of the known autosomal recessive nonsyndromic (DFNB) and Usher syndrome (USH) locus to perform a linkage analysis of 243 multi-generational Pakistani families segregating prelingual hearing loss. After genotyping, we focused on 34 families with potential linkage to MYO7A, CDH23 and SLC26A4. We screened affected individuals from a subset of these families using the OtoSeq platform to identify underlying genetic variants. Sanger sequencing was performed to confirm and study the segregation of mutations in other family members. For novel mutations, normal hearing individuals from ethnically matched backgrounds were also tested.
Results
Hearing loss was found to co-segregate with locus-specific STR markers for MYO7A in 32 families, CDH23 in one family and SLC26A4 in one family. Using the OtoSeq platform, a microdroplet PCR-based enrichment followed by NGS, we identified mutations in 28 of the 34 families including 11 novel mutations. Sanger sequencing of these mutations showed 100% concordance with NGS data and co-segregation of the mutant alleles with the hearing loss phenotype in the respective families.
Conclusion
Using NGS based platforms like OtoSeq in families segregating hearing loss, will contribute to the identification of common and population specific mutations, early diagnosis, genetic counseling and molecular epidemiology.
doi:10.1177/0194599813493075
PMCID: PMC4030297  PMID: 23770805
Hearing loss; Usher syndrome; microdroplet PCR; next generation sequencing; clinical diagnosis; genetic etiology; PDS; MYO7A; CDH23
2.  USH1K, a novel locus for type I Usher syndrome, maps to chromosome 10p11.21-q21.1 
Journal of human genetics  2012;57(10):633-637.
We ascertained two large Pakistani consanguineous families (PKDF231 and PKDF608) segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa, the defining features of Usher syndrome type 1 (USH1). To date seven USH1 loci have been reported. Here, we map a novel locus, USH1K, on chromosome 10p11.21-q21.1. In family PKDF231 we performed a genome-wide linkage screen and found a region of homozygosity shared among the affected individual at chromosome 10p11.21-q21.1. Meiotic recombination events in family PKDF231 define a critical interval of 11.74 cM (20.20 Mb) bounded by markers D10S1780 (63.83 cM) and D10S546 (75.57 cM). Affected individuals of family PKDF608 were also homozygous for chromosome 10p11-21-q21.1 linked STR markers. Of the 85 genes within the linkage interval, PCDH15, GJD4, FZD4, RET, and LRRC18 were sequenced in both families, but no potential pathogenic mutation was identified. The USH1K locus overlaps the non-syndromic deafness locus DFNB33 raising the possibility that the two disorders may be caused by allelic mutations.
doi:10.1038/jhg.2012.79
PMCID: PMC3596105  PMID: 22718019
deafness; DFNB33; retinitis pigmentosa; Usher syndrome; USH1K; vestibular dysfunction; 10p11.21-q21.1
3.  Human Cone Visual Pigment Deletions Spare Sufficient Photoreceptors to Warrant Gene Therapy 
Human Gene Therapy  2013;24(12):993-1006.
Abstract
Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5–58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM.
doi:10.1089/hum.2013.153
PMCID: PMC3868405  PMID: 24067079
4.  Molecular Remodeling of Tip Links Underlies Mechanosensory Regeneration in Auditory Hair Cells 
PLoS Biology  2013;11(6):e1001583.
Backscatter scanning electron microscopy and conventional whole cell patch-clamp experiments reveal a two-step mechanism for the regeneration of tip links, the crucial element of mechanotransduction machinery in the hair cells of the inner ear.
Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca2+-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
Author Summary
The inner ear detects sound when stereocilia, the mechanosensory projections on the apical surface of the hair cells, are deflected and tug on tiny extracellular tip links. These links interconnect stereocilia and convey forces to the mechanosensitive transduction channels. Current models postulate a static composition of the tip link with protocadherin 15 (PCDH15) at the link's bottom end and cadherin 23 (CDH23) at the upper end. Tip links are subjected to substantial sound-induced forces. Although hair cells can renew (regenerate) disrupted tip links and restore hearing, the molecular details of this process are unknown. Our study provides mechanistic insight into tip link regeneration. We used backscatter scanning electron microscopy to monitor the distribution of immuno-gold labeled molecular components of the tip links during their re-formation and a conventional whole-cell patch-clamp technique to follow the concomitant recovery of mechano-electrical transduction. According to our data, the mechanotransduction machinery is initially re-established by the formation of functional (mechanotransduction-mediating) links of a previously unknown composition, PCDH15–PCDH15. Transition to the PCDH15–CDH23 composition underlies final maturation of mechanotransduction. This two-step mechanism of tip link regeneration was unexpected. As tip links are continuously stressed by loud sounds and regenerated throughout an organism's life, we provide a plausible molecular mechanism for the life-long maintenance of mechanosensory function in nonregenerating cochlear hair cells.
doi:10.1371/journal.pbio.1001583
PMCID: PMC3679001  PMID: 23776407
6.  Mutations in CIB2, a calcium and integrin binding protein, cause Usher syndrome type 1J and nonsyndromic deafness DFNB48 
Nature genetics  2012;44(11):1265-1271.
Sensorineural hearing loss is genetically heterogeneous. Here we report that mutations in CIB2, encoding a Ca2+- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). There is one mutation of CIB2 that is a prevalent cause of DFNB48 deafness in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In rodents, CIB2 is localized in the mechanosensory stereocilia of inner ear hair cells and in retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of Ca2+ binding, CIB2 significantly decreased the ATP-induced Ca2+ responses in heterologous cells, while DFNB48 mutations altered CIB2 effects on Ca2+ responses. Furthermore, in zebrafish and Drosophila, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We show that CIB2 is a new member of the vertebrate Usher interactome.
doi:10.1038/ng.2426
PMCID: PMC3501259  PMID: 23023331
7.  Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans 
Nature Genetics  2008;40(11):1335-1340.
Many proteins necessary for sound transduction have been discovered through positional cloning of genes that cause deafness1–3. In this study, we report that mutations of LRTOMT are associated with profound non-syndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3-q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, that are detected by Western blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, novel transcripts can arise through partial or complete coalescence of genes4. We provide evidence that in the primate lineage LRTOMT evolved from the fusion of two neighboring ancestral genes, which exist as separate genes (Lrrc51and Tomt) in rodents.
doi:10.1038/ng.245
PMCID: PMC3404732  PMID: 18953341
8.  Molecular genetic studies and delineation of the oculocutaneous albinism phenotype in the Pakistani population 
Background
Oculocutaneous albinism (OCA) is caused by a group of genetically heterogeneous inherited defects that result in the loss of pigmentation in the eyes, skin and hair. Mutations in the TYR, OCA2, TYRP1 and SLC45A2 genes have been shown to cause isolated OCA. No comprehensive analysis has been conducted to study the spectrum of OCA alleles prevailing in Pakistani albino populations.
Methods
We enrolled 40 large Pakistani families and screened them for OCA genes and a candidate gene, SLC24A5. Protein function effects were evaluated using in silico prediction algorithms and ex vivo studies in human melanocytes. The effects of splice-site mutations were determined using an exon-trapping assay.
Results
Screening of the TYR gene revealed four known (p.Arg299His, p.Pro406Leu, p.Gly419Arg, p.Arg278*) and three novel mutations (p.Pro21Leu, p.Cys35Arg, p.Tyr411His) in ten families. Ex vivo studies revealed the retention of an EGFP-tagged mutant (p.Pro21Leu, p.Cys35Arg or p.Tyr411His) tyrosinase in the endoplasmic reticulum (ER) at 37°C, but a significant fraction of p.Cys35Arg and p.Tyr411His left the ER in cells grown at a permissive temperature (31°C). Three novel (p.Asp486Tyr, p.Leu527Arg, c.1045-15 T > G) and two known mutations (p.Pro743Leu, p.Ala787Thr) of OCA2 were found in fourteen families. Exon-trapping assays with a construct containing a novel c.1045-15 T > G mutation revealed an error in splicing. No mutation in TYRP1, SLC45A2, and SLC24A5 was found in the remaining 16 families. Clinical evaluation of the families segregating either TYR or OCA2 mutations showed nystagmus, photophobia, and loss of pigmentation in the skin or hair follicles. Most of the affected individuals had grayish-blue colored eyes.
Conclusions
Our results show that ten and fourteen families harbored mutations in the TYR and OCA2 genes, respectively. Our findings, along with the results of previous studies, indicate that the p.Cys35Arg, p.Arg278* and p.Gly419Arg alleles of TYR and the p.Asp486Tyr and c.1045-15 T > G alleles of OCA2 are the most common causes of OCA in Pakistani families. To the best of our knowledge, this study represents the first documentation of OCA2 alleles in the Pakistani population. A significant proportion of our cohort did not have mutations in known OCA genes. Overall, our study contributes to the development of genetic testing protocols and genetic counseling for OCA in Pakistani families.
doi:10.1186/1750-1172-7-44
PMCID: PMC3537634  PMID: 22734612
TYR; OCA2; TYRP1; SLC45A2; SLC24A5; Pakistan; Exon-trapping; Oculocutaneous Albinism; Melanocytes; Hypopigmentation
9.  Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome 19p 
Human Genetics  2011;130(6):759-765.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08 Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.
doi:10.1007/s00439-011-1018-5
PMCID: PMC3303183  PMID: 21660509
10.  Molecular and Clinical Studies of X-linked Deafness Among Pakistani Families 
Journal of human genetics  2011;56(7):534-540.
There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132, PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild to profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling, and molecular epidemiology of hearing loss among Pakistanis.
doi:10.1038/jhg.2011.55
PMCID: PMC3143270  PMID: 21633365
DFN3; Norrie disease; POU3F4; NDP; hearing loss; gushers
11.  Actin-Bundling Protein TRIOBP Forms Resilient Rootlets of Hair Cell Stereocilia That Are Essential for Hearing 
Cell  2010;141(5):786-798.
SUMMARY
Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets, but distinct from bundles formed by espin, an actin cross-linker in stereocilia. We generated mutant Triobp mice (TriobpΔex8/Δex8) that are profoundly deaf. Stereocilia of TriobpΔex8/Δex8 mice develop normally, but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere.
doi:10.1016/j.cell.2010.03.049
PMCID: PMC2879707  PMID: 20510926
12.  Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome 
BMC Medical Genetics  2011;12:21.
Background
Recessive mutations of fibroblast growth factor 3 (FGF3) can cause LAMM syndrome (OMIM 610706), characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia.
Methods
We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations.
Results
Two families segregated reported mutations (p.R104X and p.R95W) and one family segregated a novel mutation (p.R132GfsX26) of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members.
Conclusions
We noted a less prominent dental and external ear phenotype in association with the homozygous p.R95W. Therefore, we conclude that the manifestations of recessive FGF3 mutations range from fully penetrant LAMM syndrome to deafness with residual inner ear structures and, by extension, with minimal syndromic features, an observation with implications for cochlear implantation candidacy.
doi:10.1186/1471-2350-12-21
PMCID: PMC3042908  PMID: 21306635
13.  DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3 
Genetic analysis of an inbred Pakistani family PKDF280, segregating prelingual severe to profound sensorineural hearing loss, provided evidence for a DFNB locus on human chromosome 9q34.3. Co-segregation of the deafness trait with marker D9SH159 was determined by a two-point linkage analysis (LOD score 9.43 at θ=0). Two additional large families, PKDF517 and PKDF741, co-segregate recessive deafness with markers linked to the same interval. Haplotype analyses of these three families refined the interval to 3.84 Mb defined by D9S1818 (centromeric) and D9SH6 (telomeric). This interval overlaps with the previously reported DFNB33 locus whose chromosomal map position has been recently revised and assigned to a new position on chromosome 10p11.23–q21.1. The nonsyndromic deafness locus on chromosome 9q segregating in family PKDF280 was designated DFNB79. We are currently screening the 113 candidate DFNB79 genes for mutations and have excluded CACNA1B, EDF1, PTGDS, EHMT1, QSOX2, NOTCH1, MIR126 and MIR602.
doi:10.1038/ejhg.2009.121
PMCID: PMC2795002  PMID: 19603065
hereditary deafness; DFNB79; DFNB33; Pakistan; chromosome 9q34.3
14.  DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3 
Genetic analysis of inbred Pakistani family PKDF280, segregating prelingual severe to profound sensorineural hearing loss, provided evidence for a DFNB locus on human chromosome 9q34.3. Co-segregation of the deafness trait with marker D9SH159 was determined by a two-point linkage analysis (LOD score 9.43 at θ=0). Two additional large families, PKDF517 and PKDF741, co-segregate recessive deafness with markers linked to the same interval. Haplotype analyses of these three families refined the interval to 3.84 Mb defined by D9S1818 (centromeric) and D9SH6 (telomeric). This interval overlaps with the previously reported DFNB33 locus whose chromosomal map position has been recently revised and assigned to a new position on chromosome 10p11.23-q21.1. The nonsyndromic deafness locus on chromosome 9q segregating in family PKDF280 was designated DFNB79. We are currently screening the 113 candidate DFNB79 genes for mutations and have excluded CACNA1B, EDF1, PTGDS, EHMT1, QSOX2, NOTCH1, MIR126 and MIR602.
doi:10.1038/ejhg.2009.121
PMCID: PMC2795002  PMID: 19603065
hereditary deafness; DFNB79; DFNB33; Pakistan; chromosome 9q34.3
15.  Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome 
Human genetics  2008;124(3):215-223.
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.
doi:10.1007/s00439-008-0543-3
PMCID: PMC2716558  PMID: 18719945
DFNB23; Usher syndrome; protocadherin 15; PCDH15; deafness; retinitis pigmentosa
16.  USH1H, a novel locus for type I Usher syndrome, maps to chromosome 15q22-23 
Clinical genetics  2008;75(1):86-91.
Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment, progressive loss of vision attributable to retinitis pigmentosa and variable vestibular function. Three clinical types have been described with type I (USH1) being the most severe. To date six USH1 loci have been reported. We ascertained two large Pakistani consanguineous families segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa, the defining features of USH1. In these families we excluded linkage of USH to the 11 known USH loci, and subsequently performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that mapped to chromosome 15q22-23 in a 4.92 cM interval. This locus overlaps the non-syndromic deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic mutations.
doi:10.1111/j.1399-0004.2008.01038.x
PMCID: PMC2673543  PMID: 18505454
deafness; DFNB48; retinitis pigmentosa; Usher syndrome; USH1H; vestibular dysfunction; 15q22-23
18.  Double homozygous waltzer and Ames waltzer mice provide no evidence of retinal degeneration 
Molecular Vision  2008;14:2227-2236.
Purpose
To determine whether cadherin 23 and protocadherin 15 can substitute for one another in the maintenance of the retina and other tissues in the mouse. Does homozygosity for both v and av mutant alleles (i.e., a double homozygous mouse) cause retinal degeneration or an obvious retinal histopathology?
Methods
We generated mice homozygous for both Cdh23v-6J and Pcdh15av-Jfb alleles. The retinal phenotypes of double heterozygous and double homozygous mutant mice were determined by light microscopy and electroretinography (ERG). Histology on 32 different tissues, scanning electron microscopy of organ of Corti hair cells as well as serum biochemical and hematological examinations were evaluated.
Results
ERG waves of double heterozygous and double homozygous mice showed similar shape, growth of the amplitude with intensity, and implicit time for both rod and cone pathway mediated responses. Mice homozygous for both Cdh23v-6J and Pcdh15av-Jfb mutations showed no sign of retinitis pigmentosa or photoreceptor degeneration but, as expected, were deaf and had disorganized hair cell sensory bundles.
Conclusions
The simultaneous presence of homozygous mutant alleles of cadherin 23 and protocadherin 15 results only in deafness, not retinal degeneration or any other additional obvious phenotype of the major organ systems. We conclude that in the mouse cadherin 23 or protocadherin 15 appear not to compensate for one another to maintain the retina.
PMCID: PMC2593751  PMID: 19057657
19.  Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan 
BMC Medical Genetics  2004;5:24.
Background
Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3.
Methods
We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3.
Results
We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues.
Conclusion
Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.
doi:10.1186/1471-2350-5-24
PMCID: PMC523852  PMID: 15447792

Results 1-19 (19)