Search tips
Search criteria

Results 1-25 (58)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Influenza Surveillance and Incidence in a Rural Area in China during the 2009/2010 Influenza Pandemic 
PLoS ONE  2014;9(12):e115347.
Most influenza surveillance is based on data from urban sentinel hospitals; little is known about influenza activity in rural communities. We conducted influenza surveillance in a rural region of China with the aim of detecting influenza activity in the 2009/2010 influenza season.
The study was conducted from October 2009 to March 2010. Real-time polymerase chain reaction was used to confirm influenza cases. Over-the-counter (OTC) drug sales were daily collected in drugstores and hospitals/clinics. Space-time scan statistics were used to identify clusters of ILI in community. The incidence rate of ILI/influenza was estimated on the basis of the number of ILI/influenza cases detected by the hospitals/clinics.
A total of 434 ILI cases (3.88% of all consultations) were reported; 64.71% of these cases were influenza A (H1N1) pdm09. The estimated incidence rate of ILI and influenza were 5.19/100 and 0.40/100, respectively. The numbers of ILI cases and OTC drug purchases in the previous 7 days were strongly correlated (Spearman rank correlation coefficient [r] = 0.620, P = 0.001). Four ILI outbreaks were detected by space-time permutation analysis.
This rural community surveillance detected influenza A (H1N1) pdm09 activity and outbreaks in the 2009/2010 influenza season and enabled estimation of the incidence rate of influenza. It also provides a scientific data for public health measures.
PMCID: PMC4277345  PMID: 25542003
2.  Interferon regulatory factor 9 is critical for neointima formation following vascular injury 
Nature Communications  2014;5:5160.
Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates intimal thickening in response to injury, whereas IRF9 gain-of-function promotes VSMC proliferation and migration, which aggravates arterial narrowing. Mechanistically, we show that the transcription of the neointima formation modulator SIRT1 is directly inhibited by IRF9. Importantly, genetic manipulation of SIRT1 in smooth muscle cells or pharmacological modulation of SIRT1 activity largely reverses the neointima-forming effect of IRF9. Together, our findings suggest that IRF9 is a vascular injury-response molecule that promotes VSMC proliferation and implicate a hitherto unrecognized ‘IRF9–SIRT1 axis’ in vasculoproliferative pathology modulation.
Blood vessels respond to injury by thickening the supportive smooth muscle layer in a process known as neointima formation. Here the authors describe a novel regulatory pathway of neointima formation that involves a transcription factor, Interferon Regulating Factor 9, and its downstream target, the deacetylase SIRT1.
PMCID: PMC4218966  PMID: 25319116
3.  Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation 
Epigenetic modifications such as histone and DNA methylation are essential for silencing pluripotency genes during embryonic stem cell (ESC) differentiation. G9a is the major histone H3 Lys9 (H3K9) methyltransferase in euchromatin and is required for the de novo DNA methylation of the key regulator of pluripotency Oct3/4 during ESC differentiation. Surprisingly, the catalytic activity of G9a is not required for its role in de novo DNA methylation and the precise molecular mechanisms of G9a in this process are poorly understood. It has been suggested that the G9a ankyrin repeat domain, which can interact with both H3K9me2 and the DNA methyltransferase DNMT3A, could facilitate de novo DNA methylation by bridging the interaction between DNMT3A and H3K9me2-marked chromatin.
Here, we demonstrate that the G9a ankyrin domain H3K9me2-binding function is not required for the de novo DNA methylation of Oct3/4 during ESC differentiation. Moreover, we show that the interaction between the G9a ankyrin domain and DNMT3A is not sufficient to ensure efficient de novo DNA methylation. More importantly, we characterize a specific residue of the G9a ankyrin domain (Asp905) that is critical for both maintaining cellular H3K9me2 levels in undifferentiated ESCs and for the establishment of de novo DNA methylation during differentiation.
These results represent an exciting breakthrough, which reveals 1) an unexpected critical biological function of the G9a ankyrin domain in global histone H3K9 methylation and 2) valuable insights into the molecular mechanisms and interaction surfaces through which G9a regulates de novo DNA methylation of Oct3/4 during ESC differentiation.
PMCID: PMC4255711  PMID: 25478012
Histone methylation; DNA methylation; Embryonic stem cell; G9a; Ankyrin; H3K9; DNMT3A; Oct3/4
4.  Early versus Deferred Treatment for Smoldering Multiple Myeloma: A Meta-Analysis of Randomized, Controlled Trials 
PLoS ONE  2014;9(10):e109758.
Whether patients with smoldering multiple myeloma (SMM) needed to receive early interventional treatment remains controversial. Herein, we conducted a meta-analysis comparing the efficacy and safety of early treatment over deferred treatment for patients with SMM.
MEDLINE and Cochrane Library were searched to May 2014 for randomized controlled trials (RCTs) that assessed the effect of early treatment over deferred treatment. Primary outcome measure was mortality, and secondary outcome measures were progression, response rate, and adverse events.
Overall, 5 trials including 449 patients were identified. There was a markedly reduced risk of disease progression with early treatment (Odds Ratio [OR] = 0.13, 95% confidence interval [CI] = 0.07 to 0.24). There were no significant differences in mortality and response rate (OR = 0.85, 95% CI = 0.45 to 1.60, and OR = 0.63, 95% CI = 0.32 to 1.23, respectively). More patients in the early treatment arm experienced gastrointestinal toxicities (OR = 10.02, 95%CI = 4.32 to 23.23), constipation (OR = 8.58, 95%CI = 3.20 to 23.00) and fatigue or asthenia (OR = 2.72, 95%CI = 1.30 to 5.67). No significant differences were seen with the development of acute leukemia (OR = 2.80, 95%CI = 0.42 to 18.81), hematologic cancer (OR = 2.07, 95%CI = 0.43 to 10.01), second primary tumors (OR = 3.45, 95%CI = 0.81 to 14.68), nor vertebral compression (OR = 0.18, 95%CI = 0.02 to 1.59).
Early treatment delayed disease progression but increased the risk of gastrointestinal toxicities, constipation and fatigue or asthenia. The differences on vertebral compression, acute leukemia, hematological cancer and second primary tumors were not statistically significant. Based on the current evidence, early treatment didn’t significantly affect mortality and response rate. However, further much larger trials were needed to provide more evidence.
PMCID: PMC4184905  PMID: 25279718
5.  Proliferative ductular reactions correlate with hepatic progenitor cell and predict recurrence in HCC patients after curative resection 
Cell & Bioscience  2014;4(1):50.
Ductular reactions (DRs) are well documented in many acute and chronic liver disease.The DRs are thought to be the transit amplifying cells deriving from activation of the stem/progenitor cell compartments of the liver. The aim of this study was to examine the presence of proliferative index of DR (PI-DR) and HPC markers’ expression in HCCs after curative hepatectomy, as well as their relationship with clinicopathological features and prognosis.
Tissue microarray with peritumoral and intratumoral tissue samples of 120 HCCs after hepatectomy was analysed for peritumoral expression of proliferating cell nuclear antigen for PI-DR. Peritumoral and intratumoral expression status of HPC markers including EpCAM, OV6, CD133 and c-kit were also examined by immunohistochemistry. TMA analysis of HCCs revealed that peritumoral PI-DR strongly correlated with the degree of inflammation and fibrosis. The peritumoral PI-DR positively correlated with peritumoral HPC markers EpCAM, OV6, CD133 and c-kit expression. Moreover, there were highly significant correlations between peritumoral PI-DR and intratumoral HPC markers EpCAM, OV6, CD133 and c-kit expression. Further, multivariate analysis showed that peritumoral PI-DR was the independent prognostic factor for overall survival (HR; 3.316, P < 0.001), and peritumoral PI-DR had a better power to predict disease-free survival (HR; 2.618, P < 0.001).
Peritumoral PI-DR, as a valid surrogate for peritumoral and intratumoral expression of HPC markers, could be served as a potential prognostic marker for recurrence and survival in HCC after hepatectomy.
PMCID: PMC4156622  PMID: 25197550
Proliferative index of ductular reaction; Hepatic progenitor cell; Recurrence; Hepatocellular carcinoma
6.  Interferon Regulatory Factor 8 Modulates Phenotypic Switching of Smooth Muscle Cells by Regulating the Activity of Myocardin 
Molecular and Cellular Biology  2014;34(3):400-414.
Interferon regulatory factor 8 (IRF8), a member of the IRF transcription factor family, was recently implicated in vascular diseases. In the present study, using the mouse left carotid artery wire injury model, we unexpectedly observed that the expression of IRF8 was greatly enhanced in smooth muscle cells (SMCs) by injury. Compared with the wild-type controls, IRF8 global knockout mice exhibited reduced neointimal lesions and maintained SMC marker gene expression. We further generated SMC-specific IRF8 transgenic mice using an SM22α-driven IRF8 plasmid construct. In contrast to the knockout mice, mice with SMC-overexpressing IRF8 exhibited a synthetic phenotype and enhanced neointima formation. Mechanistically, IRF8 inhibited SMC marker gene expression through regulating serum response factor (SRF) transactivation in a myocardin-dependent manner. Furthermore, a coimmunoprecipitation assay indicated a direct interaction of IRF8 with myocardin, in which a specific region of myocardin was essential for recruiting acetyltransferase p300. Altogether, IRF8 is crucial in modulating SMC phenotype switching and neointima formation in response to vascular injury via direct interaction with the SRF/myocardin complex.
PMCID: PMC3911522  PMID: 24248596
7.  A Mixed Method to Evaluate Burden of Malaria Due to Flooding and Waterlogging in Mengcheng County, China: A Case Study 
PLoS ONE  2014;9(5):e97520.
Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China.
A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study.
A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR)  = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively.
Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters.
PMCID: PMC4022516  PMID: 24830808
8.  Lenalidomide after stem-cell transplantation for multiple myeloma: a meta-analysis of randomized controlled trials 
The efficacy and safety of lenalidomide maintenance therapy after ASCT in patients with MM has been in question. In order to address the issue, we conducted a meta-analysis of two randomized double-blind placebo-controlled studies encompassing 1074 patients treated with lenalidomide or placebo maintenance therapy after ASCT. The predominant clinical outcomes of interest were overall survival (OS), progression-free survival (PFS), and adverse events. There was a marked benefit in PFS with lenalidomide (Odds Ratio [OR] = 2.5, 95% confidence interval [CI] = 1.93 to 3.24). There was statistically non-significant tendency toward benefit in OS with lenalidomide (OR = 1.21, 95% CI = 0.65 to 2.24). For adverse events, more patients in lenalidomide treatment arm experienced neutropenia (OR = 4.88, 95% CI = 3.67 to 6.50), infection (OR = 2.82, 95% CI = 1.67 to 4.73), hematologic cancers (OR = 3.31, 95% CI = 1.30 to 8.41), and solid tumors (OR = 2.24, 95% CI = 1.01 to 4.98). No significant differences were seen with deep vein thrombosis (OR = 2.15, 95% CI = 0.92 to 5.06), peripheral neuropathy (OR = 1.50, 95% CI = 0.53 to 4.25), thrombocytopenia (OR = 1.05, 95% CI = 0.12 to 9.54), and anemia (OR = 1.36, 95% CI = 0.02 to 83.86). Based on these results, we conclude that lenalidomide maintenance therapy for patients with MM after ASCT was effective in the improvement of PFS. However, treatment-related adverse events must be close monitored. Although there was a trend for increased OS with lenalidomide, there was no statistically significant difference in OS between lenalidomide maintenance therapy arm and placebo maintenance therapy arm. Therefore, longer follow-up and additional high quality RCTs were needed to evaluate the effects of lenalidomide maintenance on OS.
PMCID: PMC4097223  PMID: 25031726
Lenalidomide; multiple myeloma; maintenance therapy; meta-analysis
9.  Uncoupling Transcription from Covalent Histone Modification 
PLoS Genetics  2014;10(4):e1004202.
It is widely accepted that transcriptional regulation of eukaryotic genes is intimately coupled to covalent modifications of the underlying chromatin template, and in certain cases the functional consequences of these modifications have been characterized. Here we present evidence that gene activation in the silent heterochromatin of the yeast Saccharomyces cerevisiae can occur in the context of little, if any, covalent histone modification. Using a SIR-regulated heat shock-inducible transgene, hsp82-2001, and a natural drug-inducible subtelomeric gene, YFR057w, as models we demonstrate that substantial transcriptional induction (>200-fold) can occur in the context of restricted histone loss and negligible levels of H3K4 trimethylation, H3K36 trimethylation and H3K79 dimethylation, modifications commonly linked to transcription initiation and elongation. Heterochromatic gene activation can also occur with minimal H3 and H4 lysine acetylation and without replacement of H2A with the transcription-linked variant H2A.Z. Importantly, absence of histone modification does not stem from reduced transcriptional output, since hsp82-ΔTATA, a euchromatic promoter mutant lacking a TATA box and with threefold lower induced transcription than heterochromatic hsp82-2001, is strongly hyperacetylated in response to heat shock. Consistent with negligible H3K79 dimethylation, dot1Δ cells lacking H3K79 methylase activity show unimpeded occupancy of RNA polymerase II within activated heterochromatic promoter and coding regions. Our results indicate that large increases in transcription can be observed in the virtual absence of histone modifications often thought necessary for gene activation.
Author Summary
The proper regulation of gene expression is of fundamental importance in the maintenance of normal growth and development. Misregulation of genes can lead to such outcomes as cancer, diabetes and neurodegenerative disease. A key step in gene regulation occurs during the transcription of the chromosomal DNA into messenger RNA by the enzyme, RNA polymerase II. Histones are small, positively charged proteins that package genomic DNA into arrays of bead-like particles termed nucleosomes, the principal components of chromatin. Increasing evidence suggests that nucleosomal histones play an active role in regulating transcription, and that this is derived in part from reversible chemical (“covalent”) modifications that take place on their amino acids. These histone modifications create novel surfaces on nucleosomes that can serve as docking sites for other proteins that control a gene's expression state. In this study we present evidence that contrary to the general case, covalent modifications typically associated with transcription are minimally used by genes embedded in a specialized, condensed chromatin structure termed heterochromatin in the model organism baker's yeast. Our observations are significant, for they suggest that gene transcription can occur in a living cell in the virtual absence of covalent modification of the chromatin template.
PMCID: PMC3983032  PMID: 24722509
10.  Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat 
Mammalian target of rapamycin (mTOR), a serine/threonine kinase, regulates many processes, including cell growth and the immune response. mTOR is also dysregulated in several neurological diseases, such as traumatic brain injury (TBI), stroke, and neurodegenerative disease. However, the role of mTOR in intracerebral hemorrhage (ICH) remains unexplored. The aims of our study were to determine whether inhibiting mTOR signaling could affect the outcome after ICH and to investigate the possible underlying mechanism.
A rat ICH model was induced by intracerebral injection of collagenase IV into the striatum, and mTOR activation was inhibited by administration of rapamycin. mTOR signaling activation was determined by western blotting. Neurobehavioral deficit after ICH was determined by a set of modified Neurological Severity Scores (mNSS). The levels of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and cytokines were examined using flow cytometry and ELISA, respectively.
Our results demonstrated thatmTOR signaling was activated 30 minutes and returned to its basal level 1 day after ICH. Increased p-mTOR, which mean that mTOR signaling was activated, was predominantly located around the hematoma. Rapamycin treatment significantly improved the neurobehavioral deficit after ICH, increased the number of Tregs, increased levels of interleukin-10 and transforming growth factor-β and reduced interferon-γ both in peripheral blood and brain.
Our study suggests that mTOR improves ICH outcome and modulates immune response after ICH.
PMCID: PMC3975837  PMID: 24602288
ICH; mTOR; Rapamycin; Outcome; Immune response
11.  Transplanted Neural Stem Cells Modulate Regulatory T, γδ T Cells and Corresponding Cytokines after Intracerebral Hemorrhage in Rats 
The immune system, particularly T lymphocytes and cytokines, has been implicated in the progression of brain injury after intracerebral hemorrhage (ICH). Although studies have shown that transplanted neural stem cells (NSCs) protect the central nervous system (CNS) from inflammatory damage, their effects on subpopulations of T lymphocytes and their corresponding cytokines are largely unexplored. Here, rats were subjected to ICH and NSCs were intracerebrally injected at 3 h after ICH. The profiles of subpopulations of T cells in the brain and peripheral blood were analyzed by flow cytometry. We found that regulatory T (Treg) cells in the brain and peripheral blood were increased, but γδT cells (gamma delta T cells) were decreased, along with increased anti-inflammatory cytokines (IL-4, IL-10 and TGF-β) and decreased pro-inflammatory cytokines (IL-6, and IFN-γ), compared to the vehicle-treated control. Our data suggest that transplanted NSCs protect brain injury after ICH via modulation of Treg and γδT cell infiltration and anti- and pro-inflammatory cytokine release.
PMCID: PMC3975405  PMID: 24633197
ICH; transplantation; NSCs; T lymphocyte subpopulations; immunomodulation
12.  Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data 
Lancet  2012;379(9831):2053-2062.
Carotid intima-media thickness (cIMT) is related to the risk of cardiovascular events in the general population. An association between changes in cIMT and cardiovascular risk is frequently assumed but has rarely been reported. Our aim was to test this association.
We identified general population studies that assessed cIMT at least twice and followed up participants for myocardial infarction, stroke, or death. The study teams collaborated in an individual participant data meta-analysis. Excluding individuals with previous myocardial infarction or stroke, we assessed the association between cIMT progression and the risk of cardiovascular events (myocardial infarction, stroke, vascular death, or a combination of these) for each study with Cox regression. The log hazard ratios (HRs) per SD difference were pooled by random effects meta-analysis.
Of 21 eligible studies, 16 with 36 984 participants were included. During a mean follow-up of 7·0 years, 1519 myocardial infarctions, 1339 strokes, and 2028 combined endpoints (myocardial infarction, stroke, vascular death) occurred. Yearly cIMT progression was derived from two ultrasound visits 2–7 years (median 4 years) apart. For mean common carotid artery intima-media thickness progression, the overall HR of the combined endpoint was 0·97 (95% CI 0·94–1·00) when adjusted for age, sex, and mean common carotid artery intima-media thickness, and 0·98 (0·95–1·01) when also adjusted for vascular risk factors. Although we detected no associations with cIMT progression in sensitivity analyses, the mean cIMT of the two ultrasound scans was positively and robustly associated with cardiovascular risk (HR for the combined endpoint 1·16, 95% CI 1·10–1·22, adjusted for age, sex, mean common carotid artery intima-media thickness progression, and vascular risk factors). In three studies including 3439 participants who had four ultrasound scans, cIMT progression did not correlate between occassions (reproducibility correlations between r=−0·06 and r=−0·02).
The association between cIMT progression assessed from two ultrasound scans and cardiovascular risk in the general population remains unproven. No conclusion can be derived for the use of cIMT progression as a surrogate in clinical trials.
Deutsche Forschungsgemeinschaft.
PMCID: PMC3918517  PMID: 22541275
13.  Peritumoral ductular reaction: a poor postoperative prognostic factor for hepatocellular carcinoma 
BMC Cancer  2014;14:65.
The role of ductular reaction (DR) in hepatocellular carcinoma (HCC) remains to be elucidated.
In this study, we tried to uncover possible effect by correlating peritumoral DR in a necroinflammatory microenvironment with postoperative prognosis in HCC. The expression of peritumoral DR/CK19 by immunohistochemistry, necroinflammation and fibrosis were assessed from 106 patients receiving curative resection for HCC. Prognostic values for these and other clinicopathologic factors were evaluated.
Peritumoral DR significantly correlated with necroinflammation (r = 0.563, p = 3.4E-10), fibrosis (r = 0.435, p = 3.1E-06), AFP level (p = 0.010), HBsAg (p = 4.9E-4), BCLC stage (p = 0.003), TNM stage (p = 0.002), multiple nodules (p = 0.004), absence of tumor capsule (p = 0.027), severe microscopic vascular invasion (p = 0.031) and early recurrence (p = 0.010). Increased DR was significantly associated with decreased RFS/OS (p = 4.8E-04 and p = 2.6E-05, respectively) in univariate analysis and were identified as an independent prognostic factor (HR = 2.380, 95% CI = 1.250-4.534, p = 0.008 for RFS; HR = 4.294, 95% CI = 2.255-8.177, p = 9.3E-6 for OS) in multivariate analysis.
These results suggested that peritumoral DR in a necroinflammatory microenvironment was a poor prognostic factor for HCC after resection.
PMCID: PMC3916808  PMID: 24495509
Ductular reaction (DR); Hepatic progenitor cells (HPCs); Necroinflammation; Fibrosis; Hepatocellular carcinoma (HCC); Prognosis
14.  microRNAs in Spinal Cord Injury: Potential Roles and Therapeutic Implications 
microRNAs (miRNAs) are a novel class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. miRNAs can modulate gene expression and thus play important roles in diverse neurobiological processes, such as cell differentiation, growth, proliferation and neural activity, as well as the pathogenic processes of spinal cord injury (SCI) like inflammation, oxidation, demyelination and apoptosis. Results from animal studies have revealed the temporal alterations in the expression of a large set of miRNAs following SCI in adult rats, and the expressional changes in miRNAs following SCI is bidirectional (increase or decrease). In addition, several miRNAs have distinct roles in prognosis of SCI (protective, detrimental and varied). Taken together, the existing evidence suggests that abnormal miRNA expression following SCI contributes to the pathogenesis of SCI, and miRNAs may become potential targets for the therapy of SCI.
PMCID: PMC4159691  PMID: 25210498
microRNA; spinal cord injury; therapy; diagnosis.
15.  Identification of Poly(ADP-Ribose) Polymerase-1 as a Cell Cycle Regulator through Modulating Sp1 Mediated Transcription in Human Hepatoma Cells 
PLoS ONE  2013;8(12):e82872.
The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays demonstrated that PARP inhibitors or PARP-1 siRNA treatment significantly inhibited proliferation of hepatoma cells and induced G0/G1 cell cycle arrest in hepatoma cells, while overexpression of PARP-1 or PARP-1 activator treatment promoted cell cycle progression. Simultaneously, inhibition of PARP-1 enhanced the expression of Sp1-mediated checkpoint proteins, such as p21 and p27. In this study, we also showed that Sp1 was poly(ADP-ribosyl)ated by PARP-1 in hepatoma cells. Poly(ADP-ribosyl)ation suppressed Sp1 mediated transcription through preventing Sp1 binding to the Sp1 response element present in the promoters of target genes. Taken together, these data indicated that PARP-1 inhibition attenuated the poly(ADP-ribosyl)ation of Sp1 and significantly increased the expression of Sp1 target genes, resulting in G0/G1 cell cycle arrest and the decreased proliferative ability of the hepatoma cells.
PMCID: PMC3868549  PMID: 24367566
16.  Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells 
BMC Cancer  2013;13:438.
Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved.
For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells.
TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation.
Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway.
PMCID: PMC3849379  PMID: 24066693
TNF-α; Starvation; NF-κB; Ferritin heavy chain; Autophagy; Hepatocellular carcinoma
17.  Hepatic Stellate Cells Secreted Hepatocyte Growth Factor Contributes to the Chemoresistance of Hepatocellular Carcinoma 
PLoS ONE  2013;8(9):e73312.
As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs) have a great impact on biological behaviors of hepatocellular carcinoma (HCC). In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium) exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT) and upregulation of cancer stem cell (CSC) -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF) into the CM. HGF receptor tyrosine kinase mesenchymal–epithelial transition factor (Met) was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.
PMCID: PMC3759390  PMID: 24023859
18.  SUMO-Conjugating Enzyme E2 UBC9 Mediates Viral Immediate-Early Protein SUMOylation in Crayfish To Facilitate Reproduction of White Spot Syndrome Virus 
Journal of Virology  2013;87(1):636-647.
Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host “arms race” and contribute to the development of novel methods against virulent viruses.
PMCID: PMC3536383  PMID: 23097446
19.  Elastomeric microparticles for acoustic mediated bioseparations 
Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields.
The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip.
To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules.
PMCID: PMC3706277  PMID: 23809852
Cell separation; Continuous cell sorting; Acoustofluidics; Particle synthesis; Ultrasound standing wave
20.  Down-Regulation of 11β-Hydroxysteroid Dehydrogenase Type 2 by Bortezomib Sensitizes Jurkat Leukemia T Cells against Glucocorticoid-Induced Apoptosis 
PLoS ONE  2013;8(6):e67067.
11β-hydroxysteroid dehydrogenases type 2 (11β-HSD2), a key regulator for pre-receptor metabolism of glucocorticoids (GCs) by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion) through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.
PMCID: PMC3691151  PMID: 23826195
21.  V-ATPase Is Involved in Silkworm Defense Response against Bombyx mori Nucleopolyhedrovirus 
PLoS ONE  2013;8(6):e64962.
Silkworms are usually susceptible to the infection of Bombyx mori (B. mori) nucleopolyhedrovirus (BmNPV), which can cause significant economic loss. However, some silkworm strains are identified to be highly resistant to BmNPV. To explore the silkworm genes involved in this resistance in the present study, we performed comparative real-time PCR, ATPase assay, over-expression and sub-cellular localization experiments. We found that when inoculated with BmNPV both the expression and activity of V-ATPase were significantly up-regulated in the midgut column cells (not the goblet cells) of BmNPV-resistant strains (NB and BC8), the main sites for the first step of BmNPV invasion, but not in those of a BmNPV-susceptible strain 306. Furthermore, this up-regulation mainly took place during the first 24 hours post inoculation (hpi), the essential period required for establishment of virus infection, and then was down-regulated to normal levels. Amazingly, transient over-expression of V-ATPase c subunit in BmNPV-infected silkworm cells could significantly inhibit BmNPV proliferation. To our knowledge this is the first report demonstrating clearly that V-ATPase is indeed involved in the defense response against BmNPV. Our data further suggests that prompt and potent regulation of V-ATPase may be essential for execution of this response, which may enable fast acidification of endosomes and/or lysosomes to render them competent for degradation of invading viruses.
PMCID: PMC3688796  PMID: 23823190
22.  Quantitative Analysis of Burden of Infectious Diarrhea Associated with Floods in Northwest of Anhui Province, China: A Mixed Method Evaluation 
PLoS ONE  2013;8(6):e65112.
Persistent and heavy rainfall in the upper and middle Huaihe River of China brought about severe floods during the end of June and July 2007. However, there has been no assessment on the association between the floods and infectious diarrhea. This study aimed to quantify the impact of the floods in 2007 on the burden of disease due to infectious diarrhea in northwest of Anhui Province.
A time-stratified case-crossover analysis was firstly conducted to examine the relationship between daily cases of infectious diarrhea and the 2007 floods in Fuyang and Bozhou of Anhui Province. Odds ratios (ORs) of the flood risk were quantified by conditional logistic regression. The years lived with disability (YLDs) of infectious diarrhea attributable to floods were then estimated based on the WHO framework of the calculating potential impact fraction in the Burden of Disease study.
A total of 197 infectious diarrheas were notified during the exposure and control periods in the two study areas. The strongest effect was shown with a 2-day lag in Fuyang and a 5-day lag in Bozhou. Multivariable analysis showed that floods were significantly associated with an increased risk of the number cases of infectious diarrhea (OR = 3.175, 95%CI: 1.126–8.954 in Fuyang; OR = 6.754, 95%CI: 1.954–23.344 in Bozhou). Attributable YLD per 1000 of infectious diarrhea resulting from the floods was 0.0081 in Fuyang and 0.0209 in Bozhou.
Our findings confirm that floods have significantly increased the risks of infectious diarrhea in the study areas. In addition, prolonged moderate flood may cause more burdens of infectious diarrheas than severe flood with a shorter duration. More attention should be paid to particular vulnerable groups, including younger children and elderly, in developing public health preparation and intervention programs. Findings have significant implications for developing strategies to prevent and reduce health impact of floods.
PMCID: PMC3675108  PMID: 23762291
23.  Completely Anonymous Multi-Recipient Signcryption Scheme with Public Verification 
PLoS ONE  2013;8(5):e63562.
Most of the existing multi-recipient signcryption schemes do not take the anonymity of recipients into consideration because the list of the identities of all recipients must be included in the ciphertext as a necessary element for decryption. Although the signer’s anonymity has been taken into account in several alternative schemes, these schemes often suffer from the cross-comparison attack and joint conspiracy attack. That is to say, there are few schemes that can achieve complete anonymity for both the signer and the recipient. However, in many practical applications, such as network conference, both the signer’s and the recipient’s anonymity should be considered carefully. Motivated by these concerns, we propose a novel multi-recipient signcryption scheme with complete anonymity. The new scheme can achieve both the signer’s and the recipient’s anonymity at the same time. Each recipient can easily judge whether the received ciphertext is from an authorized source, but cannot determine the real identity of the sender, and at the same time, each participant can easily check decryption permission, but cannot determine the identity of any other recipient. The scheme also provides a public verification method which enables anyone to publicly verify the validity of the ciphertext. Analyses show that the proposed scheme is more efficient in terms of computation complexity and ciphertext length and possesses more advantages than existing schemes, which makes it suitable for practical applications. The proposed scheme could be used for network conferences, paid-TV or DVD broadcasting applications to solve the secure communication problem without violating the privacy of each participant.
Key words: Multi-recipient signcryption; Signcryption; Complete Anonymity; Public verification.
PMCID: PMC3651172  PMID: 23675490
24.  Correction: Hypobaric Intermittent Hypoxia Attenuates Hypoxia-induced Depressor Response 
PLoS ONE  2013;8(4):10.1371/annotation/1b9eb18d-b23f-4a5c-8357-e517e209e821.
PMCID: PMC3629066
25.  Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice 
Cell Stem Cell  2012;10(4):455-464.
Degeneration of medium spiny GABA neurons in the basal ganglia underlies motor dysfunction in Huntington’s disease (HD) which presently lacks effective therapy. In this study, we have successfully directed human embryonic stem cells (hESCs) to enriched populations of DARPP32-expressing forebrain GABA neurons. Transplantation of these human forebrain GABA neurons and their progenitors, but not spinal GABA cells, into the striatum of quinolinic acid-lesioned mice results in generation of large populations of DARPP32+ GABA neurons, which project to the substantia nigra as well as receiving glutamatergic and dopaminergic inputs, corresponding to correction of motor deficits. This finding raises hopes for cell therapy for HD.
PMCID: PMC3322292  PMID: 22424902

Results 1-25 (58)