Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Analysis of pan-African Centres of excellence in health innovation highlights opportunities and challenges for local innovation and financing in the continent 
A pool of 38 pan-African Centres of Excellence (CoEs) in health innovation has been selected and recognized by the African Network for Drugs and Diagnostics Innovation (ANDI), through a competitive criteria based process. The process identified a number of opportunities and challenges for health R&D and innovation in the continent: i) it provides a direct evidence for the existence of innovation capability that can be leveraged to fill specific gaps in the continent; ii) it revealed a research and financing pattern that is largely fragmented and uncoordinated, and iii) it highlights the most frequent funders of health research in the continent. The CoEs are envisioned as an innovative network of public and private institutions with a critical mass of expertise and resources to support projects and a variety of activities for capacity building and scientific exchange, including hosting fellows, trainees, scientists on sabbaticals and exchange with other African and non-African institutions.
PMCID: PMC3492037  PMID: 22838941
2.  Staphylococcus aureus Induces Eosinophil Cell Death Mediated by α-hemolysin 
PLoS ONE  2012;7(2):e31506.
Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain) cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions). Supernatants prepared from a strain deficient in the accessory gene regulator (agr) that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla), failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease.
PMCID: PMC3280314  PMID: 22355374
3.  Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens 
New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach.
Author Summary
The search for new drugs for human neglected diseases accelerated in the past decade, based on the recognition that addressing these infections was necessary for global poverty reduction. The expansion of discovery and development programmes was supported by donor investment, increasing participation of the industry and the creation of Product Development Partnership (PDP) enterprises. Despite these efforts, major discovery gaps remain as, apart from some repurposed drugs and a few new molecules for malaria, no new candidate has been recently transitioned from discovery into development for the major Neglected Tropical Diseases (NTDs). In this publication, we present a collaborative network model for drug discovery based on coordinated North-South partnerships. This network carried out low-to-medium throughput whole-organism screening assays against seven NTDs (malaria, leishmaniasis, human African trypanosomiasis [HAT], Chagas' disease, schistosomiasis, onchocerciasis and lymphatic filariasis) together with an early assessment of compound toxicity in mammalian cells. We describe a screening campaign of 10,000 molecules, its outcome and the implications of this strategy for enhancing the efficiency and productivity of drug discovery for NTDs.
PMCID: PMC3243694  PMID: 22247786
4.  Defining Research to Improve Health Systems 
PLoS Medicine  2010;7(11):e1001000.
Robert Terry and colleagues present working definitions of operational research, implementation research, and health systems research within the context of research to strengthen health systems.
PMCID: PMC2993153  PMID: 21124816
5.  Developing ANDI: A Novel Approach to Health Product R&D in Africa 
PLoS Medicine  2010;7(6):e1000293.
Solomon Nwaka and colleagues discuss ANDI, the African Network for Drugs and Diagnostics Innovation, which is intended to help stimulate health research and development on the African continent.
PMCID: PMC2893959  PMID: 20613865
6.  Advancing Drug Innovation for Neglected Diseases—Criteria for Lead Progression 
The current drug R&D pipeline for most neglected diseases remains weak, and unlikely to support registration of novel drug classes that meet desired target product profiles in the short term. This calls for sustained investment as well as greater emphasis in the risky upstream drug discovery. Access to technologies, resources, and strong management as well as clear compound progression criteria are factors in the successful implementation of any collaborative drug discovery effort. We discuss how some of these factors have impacted drug discovery for tropical diseases within the past four decades, and highlight new opportunities and challenges through the virtual North–South drug discovery network as well as the rationale for greater participation of institutions in developing countries in product innovation. A set of criteria designed to facilitate compound progression from screening hits to drug candidate selection is presented to guide ongoing efforts.
PMCID: PMC2727960  PMID: 19707561
8.  Hematin Polymerization Assay as a High-Throughput Screen for Identification of New Antimalarial Pharmacophores 
Antimicrobial Agents and Chemotherapy  2000;44(10):2638-2644.
Hematin polymerization is a parasite-specific process that enables the detoxification of heme following its release in the lysosomal digestive vacuole during hemoglobin degradation, and represents both an essential and a unique pharmacological drug target. We have developed a high-throughput in vitro microassay of hematin polymerization based on the detection of 14C-labeled hematin incorporated into polymeric hemozoin (malaria pigment). The assay uses 96-well filtration microplates and requires 12 h and a Wallac 1450 MicroBeta liquid scintillation counter. The robustness of the assay allowed the rapid screening and evaluation of more than 100,000 compounds. Random screening was complemented by the development of a pharmacophore hypothesis using the “Catalyst” program and a large amount of data available on the inhibitory activity of a large library of 4-aminoquinolines. Using these methods, we identified “hit” compounds belonging to several chemical structural classes that had potential antimalarial activity. Follow-up evaluation of the antimalarial activity of these compounds in culture and in the Plasmodium berghei murine model further identified compounds with actual antimalarial activity. Of particular interest was a triarylcarbinol (Ro 06-9075) and a related benzophenone (Ro 22-8014) that showed oral activity in the murine model. These compounds are chemically accessible and could form the basis of a new antimalarial medicinal chemistry program.
PMCID: PMC90128  PMID: 10991837
9.  8-Aminoquinolines Active against Blood Stage Plasmodium falciparum In Vitro Inhibit Hematin Polymerization 
From the Walter Reed Army Institute of Research (WRAIR) inventory, thirteen 8-aminoquinoline analogs of primaquine were selected for screening against a panel of seven Plasmodium falciparum clones and isolates. Six of the 13 8-aminoquinolines had average 50% inhibitory concentrations between 50 and 100 nM against these P. falciparum clones and were thus an order of magnitude more potent than primaquine. However, excluding chloroquine-resistant clones and isolates, these 8-aminoquinolines were all an order of magnitude less potent than chloroquine. None of the 8-aminoquinolines was cross resistant with either chloroquine or mefloquine. In contrast to the inactive primaquine prototype, 8 of the 13 8-aminoquinolines inhibited hematin polymerization more efficiently than did chloroquine. Although alkoxy or aryloxy substituents at position 5 uniquely endowed these 13 8-aminoquinolines with impressive schizontocidal activity, the structural specificity of inhibition of both parasite growth and hematin polymerization was low.
PMCID: PMC89166  PMID: 10049273
10.  Central Role of Hemoglobin Degradation in Mechanisms of Action of 4-Aminoquinolines, Quinoline Methanols, and Phenanthrene Methanols 
Antimicrobial Agents and Chemotherapy  1998;42(11):2973-2977.
We have used a specific inhibitor of the malarial aspartic proteinase plasmepsin I and a nonspecific cysteine proteinase inhibitor to investigate the importance of hemoglobin degradation in the mechanism of action of chloroquine, amodiaquine, quinine, mefloquine (MQ), halofantrine, and primaquine. Both proteinase inhibitors antagonized the antiparasitic activity of all drugs tested with the exception of primaquine. An inhibitor of plasmepsin I, Ro40-4388, reduced the incorporation of radiolabelled chloroquine and quinine into malarial pigment by 95%, while causing a 70% reduction in the incorporation of radiolabelled MQ. Cysteine proteinase inhibitor E64 reduced the incorporation of chloroquine and quinine into malarial pigment by 60 and 40%, respectively. This study provides definitive support for the central role of hemoglobin degradation in the mechanism of action of the 4-aminoquinolines and the quinoline and phenanthrene methanol antimalarials.
PMCID: PMC105975  PMID: 9797235
11.  Immune Response against the Exp-1 Protein of Plasmodium falciparum Results in Antibodies That Cross-React with Human T-Cell Lymphotropic Virus Type 1 Proteins 
To examine the role of the Plasmodium falciparum Exp-1 blood-stage protein in producing antibodies that cross-react with human T-cell lymphotropic virus type I (HTLV-I) proteins, we studied sera from Indonesian volunteers who seroconverted to malaria after transmigrating to an area where malaria is hyperendemic. Samples from Philippine volunteers, that were used in a prior study that examined malaria antibodies that cross-react with HTLV-I proteins, were also used. Eighty-three percent of the Indonesian transmigrants developed antibodies against the malaria Exp-1 protein by 6 months postmigration. Of these malaria seroconverters, 27% developed false-positive HTLV-I enzyme immunoassay (EIA) immunoreactivity, as indicated by indeterminate HTLV-I Western blot banding patterns. Five of the six Philippine samples tested were HTLV-I EIA false positive and Western blot indeterminate. When a recombinant Exp-1 protein was used in blocking experiments, the HTLV-I Western blot immunoreactivity of sera from both groups was either completely eliminated or greatly reduced. No effect on the Western blot immunoreactivity of truly HTLV-I-positive sera was seen. To determine if immunization with the recombinant Exp-1 protein could elicit the production of HTLV-I antibodies, six mice were inoculated with the recombinant protein. Following administration of three 50-μg doses of the protein, four of the six mice developed antibodies that cross-reacted with HTLV-I proteins on Western blot. These results indicate that the immune response against the malaria Exp-1 protein may result in HTLV-I-cross-reacting antibodies that can lead to false-positive EIA and indeterminant Western blotting results.
PMCID: PMC95646  PMID: 9729542

Results 1-11 (11)