Search tips
Search criteria

Results 1-25 (89)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Associations Between Human Leukocyte Antigen Class I Variants and the Mycobacterium tuberculosis Subtypes Causing Disease 
The Journal of Infectious Diseases  2013;209(2):216-223.
Background. The development of active tuberculosis disease has been shown to be multifactorial. Interactions between host and bacterial genotype may influence disease outcome, with some studies indicating the adaptation of M. tuberculosis strains to specific human populations. Here we investigate the role of the human leukocyte antigen (HLA) class I genes in this biological process.
Methods. Three hundred patients with tuberculosis from South Africa were typed for their HLA class I alleles by direct sequencing. Mycobacterium tuberculosis genotype classification was done by IS6110 restriction fragment length polymorphism genotyping and spoligotyping.
Results. We showed that Beijing strain occurred more frequently in individuals with multiple disease episodes (P < .001) with the HLA-B27 allele lowering the odds of having an additional episode (odds ratio, 0.21; P = .006). Associations were also identified for specific HLA types and disease caused by the Beijing, LAM, LCC, and Quebec strains. HLA types were also associated with disease caused by strains from the Euro-American or East Asian lineages, and the frequencies of these alleles in their sympatric human populations identified potential coevolutionary events between host and pathogen.
Conclusions. This is the first report of the association of human HLA types and M. tuberculosis strain genotype, highlighting that both host and pathogen genetics need to be taken into consideration when studying tuberculosis disease development.
PMCID: PMC3873786  PMID: 23945374
Mycobacterium tuberculosis; tuberculosis; human leukocyte antigens; host–pathogen; coadaptation; susceptibility
2.  Using multi-way admixture mapping to elucidate TB susceptibility in the South African Coloured population 
BMC Genomics  2014;15(1):1021.
The admixed South African Coloured population is ideally suited to the discovery of tuberculosis susceptibility genetic variants and their probable ethnic origins, but previous attempts at finding such variants using genome-wide admixture mapping were hampered by the inaccuracy of local ancestry inference. In this study, we infer local ancestry using the novel algorithm implemented in RFMix, with the emphasis on identifying regions of excess San or Bantu ancestry, which we hypothesize may harbour TB susceptibility genes.
Using simulated data, we demonstrate reasonable accuracy of local ancestry inference by RFMix, with a tendency towards miss-calling San ancestry as Bantu. Regions with either excess San ancestry or excess African (San or Bantu) ancestry are less likely to be affected by this bias, and we therefore proceeded to identify such regions, found in cases but not in controls (642 cases and 91 controls). A number of promising regions were found (overall p-values of 7.19×10-5 for San ancestry and <2.00×10-16 for African ancestry), including chromosomes 15q15 and 17q22, which are close to genomic regions previously implicated in TB. Promising immune-related susceptibility genes such as the GADD45A, OSM and B7-H5 genes are also harboured in the identified regions.
Admixture mapping is feasible in the South African Coloured population and a number of novel TB susceptibility genomic regions were uncovered.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1021) contains supplementary material, which is available to authorized users.
PMCID: PMC4256931  PMID: 25422094
Local ancestry inference; 15q15; 17q22; GADD45A; OSM; B7-H5
3.  Species diversity of non-tuberculous mycobacteria isolated from humans, livestock and wildlife in the Serengeti ecosystem, Tanzania 
BMC Infectious Diseases  2014;14(1):616.
Non-tuberculous mycobacteria (NTM), which are ubiquitous micro-organisms occurring in humans, animals and the environment, sometimes receive public health and veterinary attention as opportunistic disease-causing agents. In Tanzania, there is limited information regarding the diversity of NTM species, particularly at the human-livestock-wildlife interface such as the Serengeti ecosystem, where potential for cross species infection or transmission may exist.
Mycobacterial DNA was extracted from cultured isolates obtained from sputum samples of 472 suspect TB patients and 606 tissues from wildlife species and indigenous cattle. Multiplex PCR was used to differentiate NTM from Mycobacterium tuberculosis complex (MTBC) members. NTM were further identified to species level by nucleotide sequencing of the 16S rRNA gene.
A total of fifty five (55) NTM isolates representing 16 mycobacterial species and 5 isolates belonging to the MTBC were detected. Overall, Mycobacterium intracellulare which was isolated from human, cattle and wildlife, was the most frequently isolated species (20 isolates, 36.4%) followed by M. lentiflavum (11 isolates, 20%), M. fortuitum (4 isolates, 7.3%) and M. chelonae-abscessus group (3 isolates, 5.5%). In terms of hosts, 36 isolates were from cattle and 12 from humans, the balance being found in various wildlife species.
This study reveals a diversity of NTM species in the Serengeti ecosystem, some of which have potential for causing disease in animals and humans. The isolation of NTM from tuberculosis-like lesions in the absence of MTBC calls for further research to elucidate their actual role in causing disease. We are also suggesting a one health approach in identifying risk factors for and possible transmission mechanisms of the NTM in the agro-pastoral communities in the Serengeti ecosystem.
PMCID: PMC4239340  PMID: 25403612
Non-tuberculous mycobacteria; Species diversity; Human-animal interface; Serengeti ecosystem
4.  Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly 
PLoS ONE  2014;9(11):e111778.
Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important implications for our understanding not only of the evolutionary and ecological dynamics of sex-ratio distorters and suppressors, but also of the functioning of deleterious and sexually-antagonistic alleles, and their impact on population viability.
PMCID: PMC4221135  PMID: 25372610
5.  Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis 
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.
PMCID: PMC3993223  PMID: 24614376
6.  Moxifloxacin Retains Antimycobacterial Activity in the Presence of gyrA Mutations 
Moxifloxacin-resistant Mycobacterium tuberculosis mutants were selected in vitro using different concentrations of moxifloxacin. gyrA mutations at codons 88 and 94 were associated with resistance (defined as an MIC of ≥2 μg/ml) (P < 0.0001 and P = 0.0053, respectively). Despite the presence of gyrA mutations, moxifloxacin significantly impedes bacterial growth, supporting its use for the treatment of ofloxacin-resistant M. tuberculosis.
PMCID: PMC3993264  PMID: 24514091
7.  Identification of a Major Locus, TNF1, That Controls BCG-Triggered Tumor Necrosis Factor Production by Leukocytes in an Area Hyperendemic for Tuberculosis 
By means of multivariate linkage analysis, we identified a major locus, TNF1, that controls BCG-triggered tumor necrosis factor production. Surprisingly, TNF1 was mapped in the vicinity of the TST1 locus, which controls tuberculin skin test negativity per se in the same family sample.
Background. Tumor necrosis factor (TNF) is a key immune regulator of tuberculosis resistance, as exemplified by the highly increased risk of tuberculosis disease among individuals receiving TNF-blocker therapy.
Methods. We determined the extent of TNF production after stimulation with BCG or BCG plus interferon gamma (IFN-γ) using a whole blood assay in 392 children belonging to 135 nuclear families from an area hyperendemic for tuberculosis in South Africa. We conducted classical univariate and bivariate genome-wide linkage analysis of TNF production using the data from both stimulation protocols by means of an extension of the maximum-likelihood-binomial method for quantitative trait loci to multivariate analysis.
Results. Stimulation of whole blood by either BCG or BCG plus IFN-γ resulted in a range of TNF release across subjects. Extent of TNF production following both stimulation protocols was highly correlated (r = 0.81). We failed to identify genetic linkage of TNF release when considering each stimulus separately. However, using a multivariate approach, we detected a major pleiotropic locus (P < 10−5) on chromosome region 11p15, termed TNF locus 1 (TNF1), that controlled TNF production after stimulation by both BCG alone and BCG plus IFN-γ.
Conclusions. The TNF1 locus was mapped in the vicinity of the TST1 locus, previously identified in the same family sample, that controls tuberculin skin test (TST) negativity per se, that is, T-cell–independent resistance to Mycobacterium tuberculosis infection. This suggested that there is a connection between TST negativity per se and TNF production.
PMCID: PMC3765013  PMID: 23800941
TNF; tuberculosis; multivariate linkage analysis; pleiotropic locus
8.  The pyrazinamide susceptibility breakpoint above which combination therapy fails 
To identify the pyrazinamide MIC above which standard combination therapy fails.
MICs of pyrazinamide were determined for Mycobacterium tuberculosis isolates, cultured from 58 patients in a previous randomized clinical trial in Cape Town, South Africa. The MICs were determined using BACTEC MGIT 960 for isolates that were collected before standard treatment with isoniazid, rifampicin, pyrazinamide and ethambutol commenced. Weekly sputum collections were subsequently made for 8 weeks in order to culture M. tuberculosis in Middlebrook broth medium. Classification and regression tree (CART) analysis was utilized to identify the pyrazinamide MIC predictive of sputum culture results at the end of pyrazinamide therapy. The machine learning-derived susceptibility breakpoints were then confirmed using standard association statistics that took into account confounders of 2 month sputum conversion.
The pyrazinamide MIC range was 12.5 to >100 mg/L for the isolates prior to therapy. The epidemiological 95% cut-off value was >100 mg/L. The 2 month sputum conversion rate in liquid cultures was 26% by stringent criteria and 48% by less stringent criteria. CART analysis identified an MIC breakpoint of 50 mg/L, above which patients had poor sputum conversion rates. The relative risk of poor sputum conversion was 1.5 (95% CI: 1.2–1.8) for an MIC >50 mg/L compared with an MIC ≤50 mg/L.
We propose a pyrazinamide susceptibility breakpoint of 50 mg/L for clinical decision making and for development of rapid susceptibility assays. This breakpoint is identical to that identified using computer-aided simulations of hollow fibre system output.
PMCID: PMC4130380  PMID: 24821594
anti-tuberculosis drugs; drug susceptibility; MICs; pharmacokinetics; sputum culture
9.  Implementation of GenoType MTBDRplus Reduces Time to Multidrug-Resistant Tuberculosis Therapy Initiation in South Africa 
Introduction of the rapid MTBDRplus diagnostic led to a significant improvement in time to multidrug-resistant tuberculosis treatment initiation. However, delays in laboratory processing, result reporting, and therapy initiation require reduction to have maximum impact on treatment outcomes and transmission interruption.
Background. Diagnosis of drug resistance and timely initiation of multidrug-resistant (MDR) tuberculosis therapy are essential to reduce transmission and improve patient outcomes. We sought to determine whether implementation of the rapid MTBDRplus diagnostic shortened the time from specimen collection to patient MDR tuberculosis therapy initiation.
Methods. We conducted a retrospective cohort analysis of 197 MDR tuberculosis patients treated at Brewelskloof, a rural tuberculosis hospital in Western Cape Province, South Africa, between 2007 and 2011.
Results. Eighty-nine patients (45%) were tested using conventional liquid culture and drug susceptibility testing (DST) on solid medium and 108 (55%) were tested using the MTBDRplus assay after positive acid-fast bacilli or culture. Median time from sample taken to therapy initiation was reduced from 80 days (interquartile range [IQR] 62–100) for conventional DST to 55 days (IQR 37.5–78) with the MTBDRplus. Although the laboratory processing time declined significantly, operational delays persisted both in the laboratory and the clinical infrastructure for getting patients started on treatment. In multivariate analysis, patients tested using the MTBDRplus test had a reduced risk of starting treatment 60 days or more after sputum collection of 0.52 (P < .0001) compared with patients tested with culture-based DST, after adjustment for smear status and site of disease.
Conclusions. Use of MTBDRplus significantly reduced time to MDR tuberculosis treatment initiation. However, DST reporting to clinics was delayed by more than 1 week due, in part, to laboratory operational delays, including dependence on smear and culture positivity prior to MTBDRplus performance. In addition, once MDR tuberculosis was reported, delays in contacting patients and initiating therapy require improvements in clinical infrastructure.
PMCID: PMC3552527  PMID: 23090928
multidrug-resistant tuberculosis; MTBDRplus; rapid molecular diagnostic
10.  Mycobacterium bovis BCG infection severely delays Trichuris muris expulsion and co-infection suppresses immune responsiveness to both pathogens 
BMC Microbiology  2014;14:9.
The global epidemiology of parasitic helminths and mycobacterial infections display extensive geographical overlap, especially in the rural and urban communities of developing countries. We investigated whether co-infection with the gastrointestinal tract-restricted helminth, Trichuris muris, and the intracellular bacterium, Mycobacterium bovis (M. bovis) BCG, would alter host immune responses to, or the pathological effect of, either infection.
We demonstrate that both pathogens are capable of negatively affecting local and systemic immune responses towards each other by modifying cytokine phenotypes and by inducing general immune suppression. T. muris infection influenced non-specific and pathogen-specific immunity to M. bovis BCG by down-regulating pulmonary TH1 and Treg responses and inducing systemic TH2 responses. However, co-infection did not alter mycobacterial multiplication or dissemination and host pulmonary histopathology remained unaffected compared to BCG-only infected mice. Interestingly, prior M. bovis BCG infection significantly delayed helminth clearance and increased intestinal crypt cell proliferation in BALB/c mice. This was accompanied by a significant reduction in systemic helminth-specific TH1 and TH2 cytokine responses and significantly reduced local TH1 and TH2 responses in comparison to T. muris-only infected mice.
Our data demonstrate that co-infection with pathogens inducing opposing immune phenotypes, can have differential effects on compartmentalized host immune protection to either pathogen. In spite of local and systemic decreases in TH1 and increases in TH2 responses co-infected mice clear M. bovis BCG at the same rate as BCG only infected animals, whereas prior mycobacterial infection initiates prolonged worm infestation in parallel to decreased pathogen-specific TH2 cytokine production.
PMCID: PMC3898725  PMID: 24433309
Helminth; Co-infection; Mycobacteria; Tuberculosis
11.  Ergothioneine Is a Secreted Antioxidant in Mycobacterium smegmatis 
Ergothioneine (ERG) and mycothiol (MSH) are two low-molecular-weight thiols synthesized by mycobacteria. The role of MSH has been extensively investigated in mycobacteria; however, little is known about the role of ERG in mycobacterial physiology. In this study, quantification of ERG at various points in the growth cycle of Mycobacterium smegmatis revealed that a significant portion of ERG is found in the culture media, suggesting that it is actively secreted. A mutant of M. smegmatis lacking egtD (MSMEG_6247) was unable to synthesize ERG, confirming its role in ERG biosynthesis. Deletion of egtD from wild-type M. smegmatis and an MSH-deficient mutant did not affect their susceptibility to antibiotics tested in this study. The ERG- and MSH-deficient double mutant was significantly more sensitive to peroxide than either of the single mutants lacking either ERG or MSH, suggesting that both thiols play a role in protecting M. smegmatis against oxidative stress and that ERG is able to partly compensate for the loss of MSH.
PMCID: PMC3697313  PMID: 23629716
12.  Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania 
Bovine tuberculosis (bTB) is a chronic debilitating disease and is a cause of morbidity and mortality in livestock, wildlife and humans. This study estimated the prevalence and risk factors associated with bovine tuberculosis transmission in indigenous cattle at the human-animal interface in the Serengeti ecosystem of Tanzania.
A total of 1,103 indigenous cattle from 32 herds were investigated for the presence of bTB using the Single Intradermal Comparative Tuberculin Test. Epidemiological data on herd structure, management and grazing system were also collected.
The apparent individual animal prevalence of tuberculin reactors was 2.4% (95% confidence interval (CI), 1.7 – 3.5%), whereas the true prevalence was 0.6% CI, 0.6 – 0.7% as indicated by a reaction to avian tuberculin purified protein derivatives (PPD) which is more than 4 mm greater than the reaction to avian tuberculin PPD. The results showed that 10.6% (117/1,103) showed non-specific reactions (atypical mycobacterium). The herd prevalence of 50% (16/32) was found. Tuberculin skin test results were found to be significantly associated with age, location, size of the household and animal tested. Of 108 respondents, 70 (64.8%) individuals had not heard about bovine tuberculosis at all. Thirty five percent (38/108) of respondents at least were aware of bTB. About 60% (23/38) of respondents who were aware of bTB had some knowledge on how bTB is spread. Eighty one percent (87/108) of respondents were not aware of the presence of bTB in wildlife. There is regular contact between cattle and wild animals due to sharing of grazing land and water sources, with 99% (107/108) of households grazing cattle in communal pastures.
The study has demonstrated a high reported interaction of livestock with wildlife and poor knowledge of most cattle owners concerning bTB and its transmission pathways among people, livestock and wildlife. Although the overall proportion of animals with bTB is relatively low, herd prevalence is 50% and prevalence within herds varied considerably. Thus there is a possibility of cross transmission of bTB at wildlife-livestock interface areas that necessitates use of genetic strain typing methods to characterize them accurately.
PMCID: PMC3881215  PMID: 24377705
Risk factors; Bovine tuberculosis; Mycobacterium bovis; Human-animal interface; Serengeti ecosystem; Wildlife
13.  A Panel of Ancestry Informative Markers for the Complex Five-Way Admixed South African Coloured Population 
PLoS ONE  2013;8(12):e82224.
Admixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The predominant population group in the Western Cape, South Africa, is the admixed group known as the South African Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population (African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce false-positive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by Rosenberg et. al's -statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South African Coloured population.
PMCID: PMC3869660  PMID: 24376522
14.  The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG 
PLoS ONE  2013;8(12):e84452.
Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine.
PMCID: PMC3868603  PMID: 24367660
15.  Alcohol, Hospital Discharge, and Socioeconomic Risk Factors for Default from Multidrug Resistant Tuberculosis Treatment in Rural South Africa: A Retrospective Cohort Study 
PLoS ONE  2013;8(12):e83480.
Default from multidrug-resistant tuberculosis (MDR-TB) treatment remains a major barrier to cure and epidemic control. We sought to identify patient risk factors for default from MDR-TB treatment and high-risk time periods for default in relation to hospitalization and transition to outpatient care.
We retrospectively analyzed a cohort of 225 patients who initiated MDR-TB treatment between 2007 through 2010 at a rural TB hospital in the Western Cape Province, South Africa.
Fifty percent of patients were cured or completed treatment, 27% defaulted, 14% died, 4% failed treatment, and 5% transferred out. Recent alcohol use was common (63% of patients). In multivariable proportional hazards regression, older age (hazard ratio [HR]= 0.97 [95% confidence interval 0.94-0.99] per year of greater age), formal housing (HR=0.38 [0.19-0.78]), and steady employment (HR=0.41 [0.19-0.90]) were associated with decreased risk of default, while recent alcohol use (HR=2.1 [1.1-4.0]), recent drug use (HR=2.0 [1.0-3.6]), and Coloured (mixed ancestry) ethnicity (HR=2.3 [1.1-5.0]) were associated with increased risk of default (P<0.05). Defaults occurred throughout the first 18 months of the two-year treatment course but were especially frequent among alcohol users after discharge from the initial four-to-five-month in-hospital phase of treatment, with the highest default rates occurring among alcohol users within two months of discharge. Default rates during the first two months after discharge were also elevated for patients who received care from mobile clinics.
Among patients who were not cured or did not complete MDR-TB treatment, the majority defaulted from treatment. Younger, economically-unstable patients and alcohol and drug users were particularly at risk. For alcohol users as well as mobile-clinic patients, the early outpatient treatment phase is a high-risk period for default that could be targeted in efforts to increase treatment completion rates.
PMCID: PMC3862731  PMID: 24349518
16.  Novel Cause of Tuberculosis in Meerkats, South Africa 
Emerging Infectious Diseases  2013;19(12):2004-2007.
The organism that causes tuberculosis in meerkats (Suricata suricatta) has been poorly characterized. Our genetic analysis showed it to be a novel member of the Mycobacterium tuberculosis complex and closely related to the dassie bacillus. We have named this epidemiologically and genetically unique strain M. suricattae.
PMCID: PMC3840885  PMID: 24274183
meerkat; Mycobacterium suricattae; suricate; tuberculosis; South Africa; tuberculosis and other mycobacteria
17.  Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study 
The Lancet. Respiratory Medicine  2013;1(10):786-792.
Recurrence of tuberculosis after treatment makes management difficult and is a key factor for determining treatment efficacy. Two processes can cause recurrence: relapse of the primary infection or re-infection with an exogenous strain. Although re-infection can and does occur, its importance to tuberculosis epidemiology and its biological basis is still debated. We used whole-genome sequencing—which is more accurate than conventional typing used to date—to assess the frequency of recurrence and to gain insight into the biological basis of re-infection.
We assessed patients from the REMoxTB trial—a randomised controlled trial of tuberculosis treatment that enrolled previously untreated participants with Mycobacterium tuberculosis infection from Malaysia, South Africa, and Thailand. We did whole-genome sequencing and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing of pairs of isolates taken by sputum sampling: one from before treatment and another from either the end of failed treatment at 17 weeks or later or from a recurrent infection. We compared the number and location of SNPs between isolates collected at baseline and recurrence.
We assessed 47 pairs of isolates. Whole-genome sequencing identified 33 cases with little genetic distance (0–6 SNPs) between strains, deemed relapses, and three cases for which the genetic distance ranged from 1306 to 1419 SNPs, deemed re-infections. Six cases of relapse and six cases of mixed infection were classified differently by whole-genome sequencing and MIRU-VNTR. We detected five single positive isolates (positive culture followed by at least two negative cultures) without clinical evidence of disease.
Whole-genome sequencing enables the differentiation of relapse and re-infection cases with greater resolution than do genotyping methods used at present, such as MIRU-VNTR, and provides insights into the biology of recurrence. The additional clarity provided by whole-genome sequencing might have a role in defining endpoints for clinical trials.
Wellcome Trust, European Union, Medical Research Council, Global Alliance for TB Drug Development, European and Developing Country Clinical Trials Partnership.
PMCID: PMC3861685  PMID: 24461758
18.  Mixed-Strain Mycobacterium tuberculosis Infections and the Implications for Tuberculosis Treatment and Control 
Clinical Microbiology Reviews  2012;25(4):708-719.
Summary: Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections.
PMCID: PMC3485752  PMID: 23034327
19.  The Contraceptive Depot Medroxyprogesterone Acetate Impairs Mycobacterial Control and Inhibits Cytokine Secretion in Mice Infected with Mycobacterium tuberculosis 
Infection and Immunity  2013;81(4):1234-1244.
The contraceptive depot medroxyprogesterone acetate (DMPA), with progestin as the single active compound, possesses selective glucocorticoid activity and can alter the expression of glucocorticoid receptor-regulated genes. We therefore propose that pharmacological doses of DMPA used for endocrine therapy could have significant immune modulatory effects and impact on susceptibility to, as well as clinical manifestation and outcome of, infectious diseases. We investigated the effect of contraceptive doses of DMPA in two different murine Mycobacterium tuberculosis models. Multiplex bead array analysis revealed that DMPA altered serum cytokine levels of tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and interleukin 10 (IL-10) in C57BL/6 mice and gamma interferon (IFN-γ) in BALB/c mice. DMPA also suppressed antigen-specific production of TNF-α, G-CSF, IL-10, and IL-6 and induced the production of IP-10 in C57BL/6 mice. In BALB/c mice, DMPA altered the antigen-specific secretion of IFN-γ, IL-17, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, and monocyte chemotactic protein 1 (MCP-1). Furthermore, we show that C57BL/6 mice treated with doses of DMPA, which result in serum concentrations similar to those observed in contraceptive users, have a significantly higher bacterial load in their lungs. Our data show for the first time that DMPA impacts tuberculosis (TB) disease severity in a mouse model and that the effects of this contraceptive are not confined to infections of the genital tract. This could have major implications for the contraceptive policies not only in developing countries like South Africa but also worldwide.
PMCID: PMC3639598  PMID: 23381991
20.  Determining Ancestry Proportions in Complex Admixture Scenarios in South Africa Using a Novel Proxy Ancestry Selection Method 
PLoS ONE  2013;8(9):e73971.
Admixed populations can make an important contribution to the discovery of disease susceptibility genes if the parental populations exhibit substantial variation in susceptibility. Admixture mapping has been used successfully, but is not designed to cope with populations that have more than two or three ancestral populations. The inference of admixture proportions and local ancestry and the imputation of missing genotypes in admixed populations are crucial in both understanding variation in disease and identifying novel disease loci. These inferences make use of reference populations, and accuracy depends on the choice of ancestral populations. Using an insufficient or inaccurate ancestral panel can result in erroneously inferred ancestry and affect the detection power of GWAS and meta-analysis when using imputation. Current algorithms are inadequate for multi-way admixed populations. To address these challenges we developed PROXYANC, an approach to select the best proxy ancestral populations. From the simulation of a multi-way admixed population we demonstrate the capability and accuracy of PROXYANC and illustrate the importance of the choice of ancestry in both estimating admixture proportions and imputing missing genotypes. We applied this approach to a complex, uniquely admixed South African population. Using genome-wide SNP data from over 764 individuals, we accurately estimate the genetic contributions from the best ancestral populations: isiXhosa , ‡Khomani SAN , European , Indian , and Chinese . We also demonstrate that the ancestral allele frequency differences correlate with increased linkage disequilibrium in the South African population, which originates from admixture events rather than population bottlenecks.
The collective term for people of mixed ancestry in southern Africa is “Coloured,” and this is officially recognized in South Africa as a census term, and for self-classification. Whilst we acknowledge that some cultures may use this term in a derogatory manner, these connotations are not present in South Africa, and are certainly not intended here.
PMCID: PMC3774743  PMID: 24066090
21.  Differences in Primary Sites of Infection between Zoonotic and Human Tuberculosis: Results from a Worldwide Systematic Review 
Tuberculosis (TB) is one of the most devastating infectious diseases worldwide. Whilst global burden estimates for M. tuberculosis infection (MtTB) are well established, accurate data on the contribution of zoonotic TB (zTB) caused by M. bovis or M. caprae to human TB are scarce. The association of M. bovis infection with extrapulmonary tuberculosis has been suggested repeatedly, though there is little scientific evidence available to support this relationship. The present study aimed to determine globally the occurrence of extrapulmonary TB and the primary site (i.e. primary body location affected) of zTB in comparison with MtTB, based on previously published reports. A systematic literature review was conducted in 32 different bibliographic databases, selecting reports on zTB written in English, French, German, Spanish or Portuguese. Data from 27 reports from Africa, America, Europe and the Western Pacific Region were extracted for analyses. Low income countries, in Africa and South-East Asia, were highly underrepresented in the dataset. The median proportion of extrapulmonary TB cases was significantly increased among zTB in comparison with data from registries of Europe and USA, reporting mainly MtTB cases (47% versus 22% in Europe, 73% versus 30% in the USA). These findings were confirmed by analyses of eight studies reporting on the proportions of extrapulmonary TB in comparable populations of zTB and MtTB cases (median 63% versus 22%). Also, disparities of primary sites of extrapulmonary TB between zTB and MtTB were detected. Our findings, based on global data, confirm the widely suggested association between zTB and extrapulmonary disease. Different disability weights for zTB and MtTB should be considered and we recommend separate burden estimates for the two diseases.
Author Summary
Tuberculosis (TB) is one of the most devastating infectious diseases worldwide. The impact estimation of worldwide human TB is well established; however, that of TB transmitted by cattle, goat or sheep (i.e. zoonotic TB) is not. The affected body sites of human and zoonotic TB are repeatedly suggested to be different, which would influence the severity and impact of the diseases. The present study aimed to determine globally the association of affected body site and zoonotic TB by a systematic literature review. Data from 27 reports from Africa, America, Europe and the Western Pacific Region were included in the analyses. We found that the proportion of extrapulmonary TB was significantly higher in zoonotic TB than in human TB. Also, disparities of the specific body sites of extrapulmonary TB between zoonotic TB and human TB were detected. Our findings, which are based on global data, confirm the widely suggested association between zoonotic TB and extrapulmonary disease. Therefore, different measurements for estimating the impact of the two diseases should be considered.
PMCID: PMC3757065  PMID: 24009789
22.  Programmatically Selected Multidrug-Resistant Strains Drive the Emergence of Extensively Drug-Resistant Tuberculosis in South Africa 
PLoS ONE  2013;8(8):e70919.
South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known.
We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations.
Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin.
XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.
PMCID: PMC3751934  PMID: 24058399
23.  Mycobacterium tuberculosis Beijing Genotype Is Associated with HIV Infection in Mozambique 
PLoS ONE  2013;8(8):e71999.
The Beijing genotype is a lineage of Mycobacterium tuberculosis that is distributed worldwide and responsible for large epidemics, associated with multidrug-resistance. However, its distribution in Africa is less understood due to the lack of data. Our aim was to investigate the prevalence and possible transmission of Beijing strains in Mozambique by a multivariate analysis of genotypic, geographic and demographic data. A total of 543 M. tuberculosis isolates from Mozambique were spoligotyped. Of these, 33 were of the Beijing lineage. The genetic relationship between the Beijing isolates were studied by identification of genomic deletions within some Regions of Difference (RD), Restriction Fragment Length Polymorphism (RFLP) and Mycobacterial Interspersed Repetivie Unit – variable number tandem repeat (MIRU-VNTR). Beijing strains from South Africa, representing different sublineages were included as reference strains. The association between Beijing genotype, Human Immunodeficiency Virus (HIV) serology and baseline demographic data was investigated. HIV positive serostatus was significantly (p=0.023) more common in patients with Beijing strains than in patients with non-Beijing strains in a multivariable analysis adjusted for age, sex and province (14 (10.9%) of the 129 HIV positive patients had Beijing strains while 6/141 (4.3%) of HIV negative patients had Beijing strains). The majority of Beijing strains were found in the Southern region of Mozambique, particularly in Maputo City (17%). Only one Beijing strain was drug resistant (multi-drug resistant). By combined use of RD and spoligotyping, three genetic sublineages could be tentatively identified where a distinct group of four isolates had deletion of RD150, a signature of the “sublineage 7” recently emerging in South Africa. The same group was very similar to South African “sublineage 7” by RFLP and MIRU-VNTR, suggesting that this sublineage could have been recently introduced in Mozambique from South Africa, in association with HIV infection.
PMCID: PMC3737140  PMID: 23940801
24.  Population Structure of Mixed Mycobacterium tuberculosis Infection Is Strain Genotype and Culture Medium Dependent 
PLoS ONE  2013;8(7):e70178.
Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection.
This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein–Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes.
A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes.
The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with “other genotype” strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype.
The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.
PMCID: PMC3728311  PMID: 23936157
25.  Rifampicin Reduces Susceptibility to Ofloxacin in Rifampicin-resistant Mycobacterium tuberculosis through Efflux 
Central dogma suggests that rifampicin resistance in Mycobacterium tuberculosis develops solely through rpoB gene mutations.
To determine whether rifampicin induces efflux pumps activation in rifampicin resistant M. tuberculosis strains thereby defining rifampicin resistance levels and reducing ofloxacin susceptibility.
Rifampicin and/or ofloxacin minimum inhibitory concentrations (MICs) were determined in rifampicin resistant strains by culture in BACTEC 12B medium. Verapamil and reserpine were included to determine their effect on rifampicin and ofloxacin susceptibility. RT-qPCR was applied to assess expression of efflux pump/transporter genes after rifampicin exposure. To determine whether verapamil could restore susceptibility to first-line drugs, BALB/c mice were infected with a MDR-TB strain and treated with first-line drugs with/without verapamil.
Measurements and Main Findings
Rifampicin MICs varied independently of rpoB mutation and genetic background. Addition reserpine and verapamil significantly restored rifampicin susceptibility (p = 0.0000). RT-qPCR demonstrated that rifampicin induced differential expression of efflux/transporter genes in MDR-TB isolates. Incubation of rifampicin mono-resistant strains in rifampicin (2 μg/ml) for 7 days induced ofloxacin resistance (MIC> 2 μg/ml) in strains with an rpoB531 mutation. Ofloxacin susceptibility was restored by exposure to efflux pump inhibitors. Studies in BALB/c mice showed that verapamil in combination with first-line drugs significantly reduced pulmonary CFUs after 1 and 2 months treatment (p < 0.05).
Exposure of rifampicin resistant M. tuberculosis strains to rifampicin can potentially compromise the efficacy of the second-line treatment regimens containing ofloxacin, thereby emphasising the need for rapid diagnostics to guide treatment. Efflux pump inhibitors have the potential to improve the efficacy of anti-tuberculosis drug treatment.
PMCID: PMC3698754  PMID: 21512166
Mycobacterium tuberculosis; drug resistance; rifampicin; efflux pumps; cross resistance

Results 1-25 (89)