PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Human rotavirus vaccine Rotarix™ provides protection against diverse circulating rotavirus strains in African infants: a randomized controlled trial 
BMC Infectious Diseases  2012;12:213.
Background
Rotaviruses are the most important cause of severe acute gastroenteritis worldwide in children <5 years of age. The human, G1P[8] rotavirus vaccine Rotarix™ significantly reduced severe rotavirus gastroenteritis episodes in a Phase III clinical trial conducted in infants in South Africa and Malawi. This paper examines rotavirus vaccine efficacy in preventing severe rotavirus gastroenteritis, during infancy, caused by the various G and P rotavirus types encountered during the first rotavirus-season.
Methods
Healthy infants aged 5–10 weeks were enrolled and randomized into three groups to receive either two (10 and 14 weeks) or three doses of Rotarix™ (together forming the pooled Rotarix™ group) or three doses of placebo at a 6,10,14-week schedule. Weekly home visits were conducted to identify gastroenteritis episodes. Rotaviruses were detected by ELISA and genotyped by RT-PCR and nucleotide sequencing. The percentage of infants with severe rotavirus gastroenteritis caused by the circulating G and P types from 2 weeks post-last dose until one year of age and the corresponding vaccine efficacy was calculated with 95% CI.
Results
Overall, 4939 infants were vaccinated and 4417 (pooled Rotarix™ = 2974; placebo = 1443) were included in the per protocol efficacy cohort. G1 wild-type was detected in 23 (1.6%) severe rotavirus gastroenteritis episodes from the placebo group. This was followed in order of detection by G12 (15 [1%] in placebo) and G8 types (15 [1%] in placebo). Vaccine efficacy against G1 wild-type, G12 and G8 types were 64.1% (95% CI: 29.9%; 82%), 51.5% (95% CI:-6.5%; 77.9%) and 64.4% (95% CI: 17.1%; 85.2%), respectively. Genotype P[8] was the predominant circulating P type and was detected in 38 (2.6%) severe rotavirus gastroenteritis cases in placebo group. The remaining circulating P types comprised of P[4] (20 [1.4%] in placebo) and P[6] (13 [0.9%] in placebo). Vaccine efficacy against P[8] was 59.1% (95% CI: 32.8%; 75.3%), P[4] was 70.9% (95% CI: 37.5%; 87.0%) and P[6] was 55.2% (95% CI: -6.5%; 81.3%)
Conclusions
Rotarix™ vaccine demonstrated efficacy against severe gastroenteritis caused by diverse circulating rotavirus types. These data add to a growing body of evidence supporting heterotypic protection provided by Rotarix™.
Trial registration number
NCT00241644
doi:10.1186/1471-2334-12-213
PMCID: PMC3462149  PMID: 22974466
2.  Changing Patterns of Rotavirus Genotypes in Ghana: Emergence of Human Rotavirus G9 as a Major Cause of Diarrhea in Children 
Journal of Clinical Microbiology  2003;41(6):2317-2322.
Genotyping of human rotaviruses was performed on 312 rotavirus-positive samples collected from 2,205 young children with diarrhea in the Upper East District of Ghana, a rural community. Of the 271 (86.9%) rotavirus strains that could be VP7 (G) or VP4 (P) characterized, 73 (26.9%) were of G9 specificity. The predominant G9 genotype was G9P[8], which constituted 79.5% of all G9 strains detected, followed by G9P[6] (12.3%), G9P[10] (2.7%), and G9P[4] (1.3%). G9 strains with mixed P types constituted 2.7% of all G9 strains found in the study. All the G9P[8] strains had a long RNA electrophoretic pattern with VP6 subgroup II specificity. Four G9 isolates, GH1319, GH1416, GH3550, and GH3574, which were selected based on the abundance of stool material and were representative of the three electropherotypes observed, were cloned and sequenced. The Ghanaian isolates shared more than 98% sequence nucleotide homology with other G9 strains from the United States (US1205), Malawi (MW69), Brazil (R160), Japan (95H115), and Nigeria (Bulumkutu). However, they showed only 95% nucleotide homology with the Thai G9 strain Mc345. Phylogenetic analysis of the nucleic acid sequence revealed the existence of at least three clusters, with Ghanaian strains forming one cluster, Nigerian and Brazilian strains forming a second cluster, and U.S., Malawian, and Japanese strains forming a third.
doi:10.1128/JCM.41.6.2317-2322.2003
PMCID: PMC156506  PMID: 12791843

Results 1-2 (2)