PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (129)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
author:("Li, liaoxia")
1.  Genome Sequence of Corynebacterium pseudotuberculosis Strain XH02 Isolated from a Boer Goat in Xuanhan, China 
Genome Announcements  2016;4(6):e01329-16.
We report here the genome sequence of Corynebacterium pseudotuberculosis strain XH02, isolated from a Boer goat in China. The genome consists of 2,357,671 bp, with a 52.18% G+C content, 2,263 coding sequences, 21 rRNAs, 49 tRNAs, and 44 predicted pseudogenes.
doi:10.1128/genomeA.01329-16
PMCID: PMC5122691  PMID: 27881549
2.  Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells 
Cell Death & Disease  2016;7(9):e2364-.
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a −28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the −28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the −28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the −28k region. Taken together, our results provide an evidence for critical role of the −28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
doi:10.1038/cddis.2016.267
PMCID: PMC5059869  PMID: 27607579
3.  Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions 
Journal of Diabetes Research  2016;2016:3853242.
Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.
doi:10.1155/2016/3853242
PMCID: PMC5019898  PMID: 27652271
4.  Variation of DNA Methylome of Zebrafish Cells under Cold Pressure 
PLoS ONE  2016;11(8):e0160358.
DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure.
doi:10.1371/journal.pone.0160358
PMCID: PMC4975392  PMID: 27494266
5.  E3 Ubiquitin Ligases Pellinos as Regulators of Pattern Recognition Receptor Signaling and Immune responses 
Immunological reviews  2015;266(1):109-122.
SUMMARY
Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an IL-1 receptor-associated kinase homologue in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2 and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g., Pellino-1 being a negative regulator in T-lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we have summarized current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and TNF receptors, and discuss Pellino’s role in sepsis and infectious diseases, as well as in autoimmune, inflammatory and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.
doi:10.1111/imr.12298
PMCID: PMC4473797  PMID: 26085210
pattern recognition receptors; signal transduction; ubiquitin; inflammation; innate immunity
6.  The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity 
Cellular and Molecular Immunology  2016;13(4):418-431.
The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.
doi:10.1038/cmi.2015.105
PMCID: PMC4947810  PMID: 27018218
IL-17 family cytokines; mucosal immunity; signal transduction
7.  Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy 
Journal of Diabetes Research  2016;2016:4065382.
Diabetic nephropathy (DN) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors contributing to DN is required to develop more effective therapeutic options. It is becoming more evident that histone acetylation (HAc), as one of the epigenetic mechanisms, is thought to be associated with the etiology of diabetic vascular complications such as diabetic retinopathy (DR), diabetic cardiomyopathy (DCM), and DN. Histone acetylases (HATs) and histone deacetylases (HDACs) are the well-known regulators of reversible acetylation in the amino-terminal domains of histone and nonhistone proteins. In DN, however, the roles of histone acetylation (HAc) and these enzymes are still controversial. Some new evidence has revealed that HATs and HDACs inhibitors are renoprotective in cellular and animal models of DN, while, on the other hand, upregulation of HAc has been implicated in the pathogenesis of DN. In this review, we focus on the recent advances on the roles of HAc and their covalent enzymes in the development and progression of DN in certain cellular processes including fibrosis, inflammation, hypertrophy, and oxidative stress and discuss how targeting these enzymes and their inhibitors can ultimately lead to the therapeutic approaches for treating DN.
doi:10.1155/2016/4065382
PMCID: PMC4917685  PMID: 27379253
8.  Histone Lysine Methylation in TGF-β1 Mediated p21 Gene Expression in Rat Mesangial Cells 
BioMed Research International  2016;2016:6927234.
Transforming growth factor beta1- (TGF-β1-) induced p21-dependent mesangial cell (MC) hypertrophy plays a key role in the pathogenesis of chronic renal diseases including diabetic nephropathy (DN). Increasing evidence demonstrated the role of posttranscriptional modifications (PTMs) in the event; however, the precise regulatory mechanism of histone lysine methylation remains largely unknown. Here, we examined the roles of both histone H3 lysine 4 and lysine 9 methylations (H3K4me/H3K9me) in TGF-β1 induced p21 gene expression in rat mesangial cells (RMCs). Our results indicated that TGF-β1 upregulated the expression of p21 gene in RMCs, which was positively correlated with the increased chromatin marks associated with active genes (H3K4me1/H3K4me2/H3K4me3) and negatively correlated with the decreased levels of repressive marks (H3K9me2/H3K9me3) at p21 gene promoter. TGF-β1 also elevated the recruitment of the H3K4 methyltransferase (HMT) SET7/9 to the p21 gene promoter. SET7/9 gene silencing with small interfering RNAs (siRNAs) significantly abolished the TGF-β1 induced p21 gene expression. Taken together, these results reveal the key role of histone H3Kme in TGF-β1 mediated p21 gene expression in RMC, partly through HMT SET7/9 occupancy, suggesting H3Kme and SET7/9 may be potential renoprotective agents in managing chronic renal diseases.
doi:10.1155/2016/6927234
PMCID: PMC4876202  PMID: 27247942
9.  A novel IL-25-signaling pathway through STAT5 
IL-25 is a member of the IL-17 family of cytokines that promotes Th2 cell-mediated inflammatory responses. IL-25 signals through a heterodimeric receptor (IL-25R) composed of IL-17RA and IL-17RB, which recruits the adaptor molecule Act1 for downstream signaling. Though the role of IL-25 in potentiating type 2-inflammation is well characterized by its ability to activate the epithelium as well as T cells, the components of its signaling cascade remain largely unknown. Here we found that IL-25 can directly activate STAT5 independently of Act1. Furthermore, conditional STAT5 deletion in T cells or epithelial cells led to a defective IL-25-initiated Th2 polarization as well as defective IL-25-enhancement of Th2 responses. Finally, we found that STAT5 is recruited to the IL-25R in a ligand dependent manner through unique tyrosine residues on IL-17RB. Together, these findings reveal a novel Act1-independent IL-25 signaling pathway through STAT5 activation.
doi:10.4049/jimmunol.1402760
PMCID: PMC4402248  PMID: 25821217
10.  Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway 
Background
In tumor microenvironment, a continuous cross-talk between cancer cells and other cellular components is required to sustain tumor progression. Accumulating evidence suggests that exosomes, a novel way of cell communication, play an important role in such cross-talk. Exosomes could facilitate the direct intercellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells. Since mesenchymal stem cells (MSCs) can be attracted to tumor sites and become an important component of the tumor microenvironment, there is an urgent need to reveal the effect of tumor exosomes on MSCs and to further explore the underlying molecular mechanisms.
Methods
Exosomes were harvested from lung cancer cell line A549 and added to MSCs. Secretion of inflammation-associated cytokines in exosome-treated MSCs were analyzed by RT-PCR and ELISA. The growth-promoting effect of exosome-treated MSCs on lung tumor cells was evaluated by in vivo mouse xenograft model. Signaling pathway involved in exosomes-treated MSCs was detected by PCR array of human toll-like receptor signaling pathway, RT-PCR, and Western blot.
Results
Data showed that lung tumor cell A549-derived exosomes could induce a pro-inflammatory phenotype in MSCs named P-MSCs, which have significantly elevated secretion of IL-6, IL-8, and MCP-1. P-MSCs possess a greatly enhanced ability in promoting lung tumor growth in mouse xenograft model. Analysis of the signaling pathways in P-MSCs revealed a fast triggering of NF-κB. Genetic ablation of Toll-like receptor 2 (TLR2) by siRNA and TLR2-neutralizing antibody could block NF-κB activation by exosomes. We further found that Hsp70 present on the surface of lung tumor exosomes contributed to the induction of P-MSCs by A549 exosomes.
Conclusions
Our studies suggest a novel mechanism by which lung tumor cell-derived exosomes induce pro-inflammatory activity of MSCs which in turn get tumor supportive characteristics.
Electronic supplementary material
The online version of this article (doi:10.1186/s13045-016-0269-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13045-016-0269-y
PMCID: PMC4836087  PMID: 27090786
Exosomes; MSCs; Tumor-supportive; Inflammation; NF-κB; TLR2; HSP70
11.  Erythropoietin regulates POMC expression via STAT3 and potentiates leptin response 
The arcuate-nucleus of the hypothalamus is essential for metabolic-homeostasis and responds to leptin by producing several neuropeptides including proopiomelanocortin (POMC). We previously reported that high-dose erythropoietin (Epo)-treatment in mice while increasing hematocrit, reduced body-weight, fat-mass, and food intake, and increased energy-expenditure. Moreover, we showed that mice with Epo receptor (EpoR) restricted to erythroid cells (ΔEpoRE) became obese and exhibited decreased energy-expenditure. Epo/EpoR-signaling was found to promote hypothalamus POMC-expression independently from leptin. Herein we used wild-type (WT) and ΔEpoRE-mice and hypothalamus-derived neural-culture system to study the signaling pathways activated by Epo in POMC neurons. We show that Epo-stimulation activated STAT3-signaling and up-regulated POMC expression in WT neural cultures. ΔEpoRE-mice hypothalamus showed reduced POMC levels, and lower STAT3-phosphorylation, with and without leptin-treatment, compared to in vivo and ex vivo WT controls. Collectively, these data show that Epo regulates hypothalamus POMC-expression via STAT3-activation, and provide a previously unrecognized link between Epo- and leptin-response.
doi:10.1530/JME-15-0171
PMCID: PMC4692057  PMID: 26563310
Erythropoietin; POMC; Hypothalamus and Neuroendocrinology; Gene Expression
12.  Three novel mutations of APC gene in Chinese patients with familial adenomatous polyposis 
Tumour Biology  2016;37(8):11421-11427.
Familial adenomatous polyposis (FAP) is an autosomal dominant disorder characterized by the development of hundreds to thousands of colonic adenomas and an increased risk of colorectal cancer. Adenomatous polyposis coli (APC), encoding a large multidomain protein involved in antagonizing the Wnt signaling pathway, has been identified as the main causative gene responsible for FAP. In this study, we identified three novel mutations as well as two recurrent mutations in the APC in five Chinese FAP families by sequencing. Immunohistochemical analysis revealed that among these mutations, a nonsense mutation (c.2510C>G) and two small deletions (c.2016_2047del, c.3180_3184del) led to the truncation of the APC protein and the cytoplasmic and nuclear accumulation of β-catenin in the colorectal samples from affected individuals, respectively. Our study expands the database on mutations of APC and provides evidence to understand the function of APC in FAP.
doi:10.1007/s13277-016-4986-1
PMCID: PMC4999466  PMID: 27000756
Familial adenomatous polyposis; Adenomatous polyposis coli; Colorectal cancer; Mutation analysis; Immunohistochemistry
13.  A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis 
The Journal of Experimental Medicine  2015;212(10):1571-1587.
Wu et al. report a novel IL-17–mediated cascade via the IL-17R–TRAF4–ERK5 axis that directly stimulates keratinocyte proliferation and skin tumor formation in mice.
Although IL-17 is emerging as an important cytokine in cancer promotion and progression, the underlining molecular mechanism remains unclear. Previous studies suggest that IL-17 (IL-17A) sustains a chronic inflammatory microenvironment that favors tumor formation. Here we report a novel IL-17–mediated cascade via the IL-17R–Act1–TRAF4–MEKK3–ERK5 positive circuit that directly stimulates keratinocyte proliferation and tumor formation. Although this axis dictates the expression of target genes Steap4 (a metalloreductase for cell metabolism and proliferation) and p63 (a transcription factor for epidermal stem cell proliferation), Steap4 is required for the IL-17–induced sustained expansion of p63+ basal cells in the epidermis. P63 (a positive transcription factor for the Traf4 promoter) induces TRAF4 expression in keratinocytes. Thus, IL-17–induced Steap4-p63 expression forms a positive feedback loop through p63-mediated TRAF4 expression, driving IL-17–dependent sustained activation of the TRAF4–ERK5 axis for keratinocyte proliferation and tumor formation.
doi:10.1084/jem.20150204
PMCID: PMC4577838  PMID: 26347473
14.  TRAF4-SMURF2-mediated DAZAP2 degradation is critical for IL-25 signaling and allergic airway inflammation 
Interleukin-25 (IL-25) promotes Type-2 immunity by inducing the expression of Th2-associated cytokines. While it is known that the IL-25R (IL-17RB) recruits the adaptor protein ACT1, the IL-25R signaling mechanism remains poorly understood. While screening for IL-25R components, we found that IL-25 responses were impaired in Traf4 –/– cells. Administering IL-25 to Traf4 –/– mice resulted in blunted airway eosinophilia and Th2 cytokine production. Notably, IL-25R recruitment of TRAF4 was required for the ACT1/IL-25R interaction. Mechanistically, TRAF4 recruited the E3-ligase SMURF2, to degrade the IL-25R-inhibitory molecule DAZAP2. Silencing Dazap2 increased ACT1/IL-25R interaction and IL-25 responsiveness. Moreover a tyrosine within the IL-25R elicited DAZAP2 interference. This study indicates that TRAF4-SMURF2-mediated DAZAP2 degradation is a crucial initiating event for the IL-25 response.
doi:10.4049/jimmunol.1402647
PMCID: PMC4366881  PMID: 25681341
15.  Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems have been successfully used as efficient tools for genome editing in a variety of species. We used the CRISPR/Cas9 system to mutate the Gn1a (Os01g0197700), DEP1 (Os09g0441900), GS3 (Os03g0407400), and IPA1 (Os08g0509600) genes of rice cultivar Zhonghua 11, genes which have been reported to function as regulators of grain number, panicle architecture, grain size and plant architecture, respectively. Analysis of the phenotypes and frequencies of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in inducing targeted gene editing, with the desired genes being edited in 42.5% (Gn1a), 67.5% (DEP1), 57.5% (GS3), and 27.5% (IPA1) of the transformed plants. The T2 generation of the gn1a, dep1, and gs3 mutants featured enhanced grain number, dense erect panicles, and larger grain size, respectively. Furthermore, semi-dwarf, and grain with long awn, phenotypes were observed in dep1 and gs3 mutants, respectively. The ipa1 mutants showed two contrasting phenotypes, having either fewer tillers or more tillers, depending on the changes induced in the OsmiR156 target region. In addition, we found that mutants with deletions occurred more frequently than previous reports had indicated and that off-targeting had taken place in highly similar target sequences. These results proved that multiple regulators of important traits can be modified in a single cultivar by CRISPR/Cas9, and thus facilitate the dissection of complex gene regulatory networks in the same genomic background and the stacking of important traits in cultivated varieties.
doi:10.3389/fpls.2016.00377
PMCID: PMC4811884  PMID: 27066031
CRISPR/Cas9 system; gene editing; Oryza sativa L.; yield-related genes; yield-related traits
16.  New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis) 
Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of crops by molecular breeding.
doi:10.3389/fpls.2016.00954
PMCID: PMC4928129  PMID: 27446180
sheepgrass; drought stress; RNA-seq; ABA-dependent pathway; transcription factors
17.  miR-140-5p regulates adipocyte differentiation by targeting transforming growth factor-β signaling 
Scientific Reports  2015;5:18118.
Recent emerging studies of miRNAs in adipocyte commitment provide new insights to understand the molecular basis of adipogenesis. The current study indicated that miR-140-5p was altered in primary cultured marrow stromal cells and established progenitor lines after adipogenic and/or osteogenic treatment. miR-140-5p was increased in adipose tissue in db/db obese mice vs. lean mice. Supplementing miR-140-5p activity induced stromal cell ST2 and preadipocyte 3T3-L1 to differentiate into mature adipocytes. Conversely, inhibition of the endogenous miR-140-5p repressed ST2 and 3T3-L1 to fully differentiate. By contrast, knockdown of the endogenous miR-140-5p enhanced osteoblast differentiation. Transforming growth factor-β receptor I (Tgfbr1) was shown to be a direct target of miR-140-5p. Supplementing miR-140-5p in ST2 reduced the level of TGFBR1 protein, while suppression of endogenous miR-140-5p increased TGFBR1. Overexpression of Tgfbr1 inhibited, whereas knockdown of Tgfbr1 promoted adipogenic differentiation of ST2 cells. Further investigation of mechanisms that control miR-140-5p expression revealed that C/EBPα induced transcriptional activity of the miR-140-5p promoter. Removal of the putative response element of C/EBP from the promoter abolished the enhancement of the promoter activity by C/EBPα, suggesting that C/EBPα transcriptionally controls miR-140-5p expression. Taken together, our study provides evidences that miR-140-5p regulates adipocyte differentiation through a C/EBP/miR-140-5p/TGFBR1 regulatory feedback loop.
doi:10.1038/srep18118
PMCID: PMC4676041  PMID: 26657345
18.  SHP-2 Mediates C-type Lectin Receptors-induced Syk Activation and Anti-fungal TH17 Responses 
Nature immunology  2015;16(6):642-652.
SUMMARY
Fungal infection stimulates the canonical C-type lectin receptors (CLRs) signaling pathway via Syk activation. Here we show that SHP-2 plays a crucial role in mediating CLRs-induced Syk activation. Genetic ablation of Shp-2 (Ptpn11) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated pro-inflammatory gene expression following fungal stimulation. Mechanistically, SHP-2 operates as a scaffold facilitating the recruitment of Syk to dectin-1 or FcRγ, through its N-SH2 domain and a previously unrecognized C-terminal ITAM motif. We demonstrate that DC-derived SHP-2 is crucial for the induction of IL-1β, IL-6 and IL-23, and anti-fungal TH17 cell responses to control Candida albicans infection. Together, these data reveal a mechanism by which SHP-2 mediates Syk activation in response to fungal infections
doi:10.1038/ni.3155
PMCID: PMC4439382  PMID: 25915733
C-type lectin receptors; SHP-2; Candida albicans; TH17
19.  Transcriptome Analysis of Long Noncoding RNAs in Toll-Like Receptor 3-Activated Mesenchymal Stem Cells 
Stem Cells International  2015;2016:6205485.
Mesenchymal stem cells (MSCs) possess great immunomodulatory capacity which lays the foundation for their therapeutic effects in a variety of diseases. Recently, toll-like receptors (TLR) have been shown to modulate MSC functions; however, the underlying molecular mechanisms are poorly understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are an important class of regulators involved in a wide range of biological processes. To explore the potential involvement of lncRNAs in TLR stimulated MSCs, we performed a comprehensive lncRNA and mRNA profiling through microarray. 10.2% of lncRNAs (1733 out of 16967) and 15.1% of mRNA transcripts (1760 out of 11632) were significantly differentially expressed (absolute fold-change ≥5 , P value ≤0.05) in TLR3 stimulated MSCs. Furthermore, we characterized the differentially expressed lncRNAs through their classes and length distribution and correlated them with differentially expressed mRNA. Here, we are the first to determine genome-wide lncRNAs expression patterns in TLR3 stimulated MSCs by microarray and this work could provide a comprehensive framework of the transcriptome landscapes of TLR3 stimulated MSCs.
doi:10.1155/2016/6205485
PMCID: PMC4670881  PMID: 26681952
20.  Downregulation of SUMF2 gene in ovalbumin-induced rat model of allergic inflammation 
Sulfate-modifying factor 2 (SUMF2), a member of the formylglycine-generating enzyme family, was earlier found to play a role in the regulation of interleukin (IL)-13 expression and secretion in airway smooth muscle cells. IL-13 is a T helper 2 cytokine that plays important roles in the pathogenesis of asthma. However, there is little evidence of the potential role of SUMF2 in the cellular inflammatory responses in asthma. Here, using an ovalbumin-induced asthma rat model, we show that SUMF2 gene expression is significantly decreased in allergic asthma rats. Moreover, several pathological changes were observed in the lung tissue and IL-13 was found to be overexpressed in the ovalbumin-induced asthma model. Additional studies on the lung bronchial epithelial tissues, peripheral blood lymphocytes and bronchoalveolar lavage fluid of the OVA-induced asthma rats showed that SUMF2 mRNA and protein expression were attenuated. However, there was only a little significant correlation was found between SUMF2 and IL-13 expression. These results indicate that SUMF2 may mediate airway inflammation in allergic asthma by modulating the expression of IL-13. More data from in vivo experiments are needed to clearly understand the role of SUMF2 in asthma.
PMCID: PMC4680335  PMID: 26722390
Allergic asthma; interleukin-13; SUMF2 gene; OVA; airways inflammation; airway smooth muscle cells
21.  Proteomics and bioinformatics analysis of mouse hypothalamic neurogenesis with or without EPHX2 gene deletion 
The aim of this study was to identify differently expressed proteins in the presence and absence of EPHX2 gene in mouse hypothalamus using proteomics profiling and bioinformatics analysis. This study was performed on 3 wild type (WT) and 3 EPHX2 gene global knockout (KO) mice (EPHX2 -/-). Using the nano- electrospray ionization (ESI)-LC-MS/MS detector, we identified 31 over-expressed proteins in WT mouse hypothalamus compared to the KO counterparts. Gene Ontology (GO) annotation in terms of the protein-protein interaction network indicated that cellular metabolic process, protein metabolic process, signaling transduction and protein post-translation biological processes involved in EPHX2 -/- regulatory network. In addition, signaling pathway enrichment analysis also highlighted chronic neurodegenerative diseases and some other signaling pathways, such as TGF-beta signaling pathway, T cell receptor signaling pathway, ErbB signaling pathway, Neurotrophin signaling pathway and MAPK signaling pathway, were strongly coupled with EPHX2 gene knockout. Further studies into the molecular functions of EPHX2 gene in hypothalamus will help to provide new perspective in neurogenesis.
PMCID: PMC4680398  PMID: 26722453
EPHX2; hypothalamic neurogenesis; proteomics profiling; protein network
22.  Carex jianfengensis (Carex sect. Rhomboidales, Cyperaceae), a New Species from Hainan, China 
PLoS ONE  2015;10(9):e0136373.
A new species of Carex sect. Rhomboidales, C. jianfengensis, is described and illustrated from Hainan, China. The new species is similar to C. zunyiensis but differs in having involucral bracts sparsely hispid and with ca.1 cm long sheaths; inflorescence with 4 spikes, terminal spike ca. 2.5 cm long, lateral spikes 2–3.5 × 0.7–1 cm; staminate glumes narrowly ovate, ca. 5 mm; pistillate glumes triangular-lanceolate, 5–7 mm; perigynia 6–8 × 3 mm and pubescent on veins; nutlet 4–5 mm long, rhombic-ovoid, trigonous, base with shortly stipitate, apex abruptly contracted into a erect short beak, and not expanding into an annulate orifice.
doi:10.1371/journal.pone.0136373
PMCID: PMC4580456  PMID: 26397809
23.  IRAK4 Dimerization and Trans-autophosphorylation are Induced by Myddosome Assembly 
Molecular cell  2014;55(6):891-903.
SUMMARY
Trans -autophosphorylation is among the most prevalent means of protein kinase activation, yet its molecular basis is poorly defined. In Toll-like receptor and interleukin-1 receptor signaling pathways, the kinase IRAK4 is recruited to the membrane proximal adapter MyD88 through death domain (DD) interactions, forming the oligomeric Myddosome and mediating NF-κB activation. Here we show that unphosphorylated IRAK4 dimerizes in solution with a Kd of 2.5 μM and that Myddosome assembly greatly enhances IRAK4 kinase domain (KD) autophosphorylation at sub-Kd concentrations. The crystal structure of the unphosphorylated IRAK4KD dimer captures a conformation that appears to represent the actual trans-autophosphorylation reaction, with the activation loop phosphosite of one IRAK4 monomer precisely positioned for phosphotransfer by its partner. We show dimerization is crucial for IRAK4 autophosphorylation in vitro and ligand-dependent signaling in cells. These studies identify a mechanism for oligomerization-driven allosteric autoactivation of IRAK4 that may be general to other kinases activated by autophosphorylation.
doi:10.1016/j.molcel.2014.08.006
PMCID: PMC4169746  PMID: 25201411
24.  Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells 
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour-suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre-mature miRNAs. To investigate whether DNA methylation alters the expression of miR-129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR-129-2 gene was absolutely methylated in both A549 and SPCA-1 lung cancer cells, but totally un-methylated in 95-D cells. The expression of miR-129 was restored by 5-Aza-2’-deoxycytidine (DAC), a de-methylation agent, in both A549 and SPCA-1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF-κB, which indicates the involvement of NF-κB pathway. To further illustrate the roles of miR-129 in lung tumourigenesis, we overexpressed miR-129 in lung cancer cells by transfection of miR-129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR-129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.
doi:10.1111/jcmm.12597
PMCID: PMC4568922  PMID: 26081366
microRNA; valosin-containing protein; DNA methylation; cell invasion; lung cancer
25.  Promoting roles of the secreted frizzled-related protein 2 as a Wnt agonist in lung cancer cells 
Oncology Reports  2015;34(5):2259-2266.
The secreted frizzled-related protein 2 (SFRP2) plays a pivotal role in the Wnt pathway, however, it functions as an agonist or an antagonist is still controversial. We profiled SFRP2 expression in several lung cancer cell lines, and found that A549 and 95-D exhibited the lowest and the highest level of SFRP2, respectively. Then we employed the SFRP2-overexpressing plasmid and siRNA to transfect A549 and 95-D cells, respectively. Through MTT assays, we found that SFRP2 knockdown inhibited cell proliferation, and halted the 95-D cells in G1 phase of the cell cycle by downregulation of CCND1 and CDK4, indicating that SFRP2 has the ability of promoting lung cancer cell proliferation. We further checked the cell properties of migration and invasion, using wound scratch assay and Transwell assays. The data showed decreased migrated and invasive 95-D cells after SFRP2 knockdown, and the observations were the opposite in the overexpressing model, implying that SFRP2 promoted lung cancer cell invasion. Moreover, the canonical Wnt pathway was also studied through detection of β-catenin by western blotting. In the SFRP2 overexpressing model, A549 cells presented stronger expression of β-catenin compared with controls, while it was the opposite in 95-D cells. These results suggested that SFRP2 serves as a Wnt agonist in lung cancer cells. Together, the findings of this study implied that SFRP2 is not only an agonist of Wnt pathway, but also a cancer promoting protein for lung cancer, indicating SFRP2 as a promising therapeutic target for lung cancer treatment.
doi:10.3892/or.2015.4221
PMCID: PMC4583535  PMID: 26323494
secreted frizzled-related protein 2; cell proliferation; cell invasion; lung cancer; Wnt pathway

Results 1-25 (129)